Теплопотери в домах, их подробный правильный расчет

Теплотехнический расчет полов расположенных на грунте Теплотехнический расчет пола по грунту Архитектура Сообщение от : самый простой вариант –

Принцип проведения расчета

Было бы большой ошибкой полагать, что утеплять любую строительную конструкцию можно, как говорится, «на глаз». Хорошо, если повезет и угадаете, но вероятность такой удачи – невелика, можно ошибиться как в одну, так и в другую сторону. И то, и другое – плохо. О последствиях недостаточности термоизоляции уже говорилось выше. А ее избыточность приводит к совершенно ненужному перерасходу материалов или усложнению конструкции.

Все должно основываться на расчетах. Да, многих читателей заранее пугает перспектива проведения каких бы то ни было вычислений. Поспешим их успокоить – ничего сверхъестественно сложного их не ждет. Тем более, мы «вооружим» их и пониманием принципа расчета, и удобным калькулятором, в котором всего лишь надо будет указать некоторые исходные данные.

Непосредственно про технологию выполнения термоизоляционных работ при утеплении пола говориться не будет – этому отведена специальная публикация нашего сайта. Остановимся лишь на тех нюансах, которые напрямую влияют на размеры термоизоляционного слоя.

Как производится утепление полов в частном доме?

Задача непростая, но справиться с ней можно и самостоятельно, не прибегая к услугам наемных специалистов. Пусть в помощь читателю будет специальная публикация нашего портала, посваященная именно утеплению полов в частном доме своими руками.

Итак, чтобы утепление считалось полноценным, суммарное сопротивление теплопередаче строительной конструкции (его еще часто называют термическим сопротивлением) должно быть не ниже установленного нормированного значения. Этот показатель измеряется в м² × °С / Вт, и рассчитан для каждого региона с учетом специфики климатических условий. Конкретное значение можно отыскать в таблицах СНиП, уточнить в местной строительной организации или просто взять из предлагаемой карты-схемы территории России.

Важно – для разных конструкций установлены свои нормированные значения. Раз мы имеет дело с полом, то нас интересует значение «для перекрытий». Чтобы проще было ориентироваться на схеме, эти показатели выделены голубыми цифрами.

Нормированные значения термического сопротивления для строительных конструкций жилых домов по регионам России

Нормированные значения термического сопротивления для строительных конструкций жилых домов по регионам России

Теперь – небольшая формула, которая потребуется для проведения расчетов.

Термическое сопротивление однородного слоя строительной конструкции равно:

R = h / λ

h – толщина этого слоя (важно – выраженная в метрах)

λ – коэффициент теплопроводности материала, из которого изготовлен этот слой (измеряется в Вт/м×°С).

Коэффициенты теплопроводности – это табличные величины, значение которых несложно найти на справочных интернет-ресурсах. А для утеплительных материалов они, кроме того, обычно указываются производителем в паспортных данных.

Суммарное термическое сопротивление строительной конструкции, состоящей из нескольких слоев, в числе которых — и слой утепления, будет равно:

Rc = R₁ + R₂ +…+ Rt = h₁ / λ₁ + h₂ / λ₂ + …+ ht / λt

Символ «t» в данном случае говорит, что это показатели слоя термоизоляции.

Итак, если известно значение нормированного термического сопротивления, если имеется представление о строении создаваемой конструкции пола, то совсем несложно определить ту толщину утеплительного материала, которая обеспечит нужный уровень термоизоляции.

ht = (Rc – h₁ / λ₁ – h₂ / λ₂ – …) × λt

Зная коэффициент теплопроводности выбранного термоизоляционного материала, получаем его необходимую толщину.

Возможно, вас заинтересует информация о том, как монтировать пленочный теплый пол под ламинат

Теплотехнический расчет полов расположенных на грунте

Задаемся конструкцией покрытия «холодного чердака» и определяем требуемое общее термическое сопротивление по уравнению (2.1):

image023.png

Рассчитаем величину сопротивления теплопередаче с учётом энергосбережения по формуле (2.2):

image024.pngimage025.png

Тогда для проведения дальнейших расчётов следует взять большее значение .

Так как покрытие «холодного чердака» выполнено в виде сложной конструкции из нескольких слоёв, то общее сопротивление теплопередаче рассчитывается по формуле (2.3):

image026.png

Таким образом, условие теплотехнического расчета выполнено.

Рассчитаем коэффициент теплопередачи для данной ограждающей конструкции по (2.4):

image027.png

Архитектура

Сообщение от :
самый простой вариант — аналитическое решение одномерного уравнения теплопроводности Фурье, для полупространства.

Сообщение от :
Почитаете Малявину «Теплопотери здания» раздел » Приведенное сопротивление теплопередаче полов и стен на грунте». Там все подробно расписано.

Сообщение от :
Нормативно вопрос описан с последнем советском снипе отопление и вентиляция либо в новом минрегионовском сп тепловая защита зданий

Сообщение от :
Посмотрите СП 23-101-2004 приложение Я, пункт Я 2.1, там есть небольшой пример расчета

3:1 в пользу «наших».

Сообщение от BoogeyMan:
Нужно взять программу которая считает двумерные узлы методом конечных элементов

вот это тоже в «не наших» можно включить
или просто вне конкурса?

Сообщение от BoogeyMan:
вот это тоже в «не наших» можно включить
или просто вне конкурса?

Я например не совсем представляю как правильно ставить задачу по расчету с участием грунта в этой программе

Сообщение от :
вот это тоже в «не наших» можно включить
или просто вне конкурса?

Существует «инженерная практика», подтвержденная нормативными документами, и «наука». В частности, для теплотехнических расчетов полов по грунту десятки лет используется простая методика расчета таких полов с разбиением на зоны двухметровой ширины. Инженеру, который каждый день должен «гнать продукцию» эта методика, простая как лом, очень подходит. Она и разработана-то была инженерами.

С точки же зрения ученых там всё слишком просто — любой, знающий четыре действия арифметики, выполнит этот расчет. Ученому надо внести «вклад в науку», т.е. придумать что-то свое. Всё простое и надежное (например лом) уже придумано инженерами. Значит надо сделать как-то «по ученому», иначе о чем же труды и диссертации писать. Ну, например предложить «самый простой вариант — аналитическое решение одномерного уравнения теплопроводности Фурье, для полупространства» или «метод конечных элементов». И установить, что «точность предложенной методики на ХХ% выше, чем у традиционных методов». Готово. Есть вклад в науку, публикации и прочие приятные вещи.

Однако «простой инженер» если вздумает и сумеет этим воспользоваться, то сначала потеряет много времени, а потом получит по носу в Заключении экспртизы: «Расчет не соответствует действующим нормам». Вот и вся наука.

Надо заметить, что в связи с вымиранием и выбиванием практических инженеров, когда-то разрабатывающих СНиПы, и в нормах появляется ненужная наукообразность. Пример — тот же СП50 по тепловой защите зданий. В него и «свой вклад» умудрились втолкнуть, и сделать противоречивым со множеством других нормативных докментов, включая постановление Правительства. А все претензии по содержанию документавЮ высказывавшиеся «неоднократно и многократно» были с презрением отвергнуты. Ну да, «чукча не читатель, чукча писатель».

Сообщение от ShaggyDoc:
Всё простое и надежное (например лом) уже придумано инженерами.

при такой идеологии — деградация россии гарантирована!

*** как говорил один прапорщик — Чего тут думать?
Трясти нужно!

Сообщение от :
при такой идеологии — деградация россии гарантирована!

Такие лозунги можете демонстрировать в пикетах возле Госэкспертизы, которая завернет документацию, как несоответствующую действующим нормам. Кстати, как раз теплотехнический расчет экспертизы требуют предоставлять с полной расшифровкой и по формулам, и по подставляемых в них значениях при проверке раздела «Энергоэффективность. «. Вплоть до проверки «арихметики».

Хотите, чтобы «деградации» не было — добивайтесь включения методик в нормативные документы, а не ошарашивайте наукообразными предложениями людей, которые впервые сталкиваются с темой.

Сообщение от :
*** как говорил один прапорщик — Чего тут думать?

Как говорил один поэт:

Сообщение от :
Он был монтером Ваней,
но. в духе парижан,
себе присвоил званье:
«электротехник Жан».

ах да.
формулы.
шаманы.

Сообщение от CAE_Engineer:
ах да.
формулы.
шаманы.

Самы простой расчет стены можно раздуть на целое исследование, а потом на монтаже так напортачать.
Ну и экспертиза конечно)

Сообщение от CAE_Engineer:
ах да.
формулы.
шаманы.

Ах да. CAE. Engineer. CAE-Services. Moskow. HVAC. «Неллоу, общежитие слушает». Вау. Океюшки. совок. рашка. эта страна.
«Людоедки-Эллочки» и «электротехники-Жаны» на новый лад, однако. Ряды Фурье.

Основные параметры для расчета теплопотерь

Теплопотери любого помещения зависят от трех базовых параметров:

  • объем помещения – нас интересует объем воздуха, который необходимо отопить
  • разницу температуры внутри и снаружи помещения – чем больше разница тем быстрее происходит теплообмен и воздух теряет тепло
  • теплопроводность ограждающих конструкций – способность стен, окон удерживать тепло

Теоретическое обоснование расчета тепловых потерь

Для расчета потерь теплоты через ограждающие конструкции помещений используют законченную формулу из СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:

Q = S × ((tв – tн) / R)

  • S – площадь помещения, м2;
  • tв – температура внутренняя, °С;
  • tн – температура наружная, °С;
  • R – термическое сопротивление материала, (м2 × °С)/Вт.

Для расчета общего термического сопротивления стен дополнительно применяются поправочные коэффициенты:

Rобщ = Rм + Rв + Rн

  • Rм – термическое сопротивление материала, Вт/(м2 × °С);
  • Rв – термическое сопротивление внутренней поверхности стены, Вт/(м2 × °С);
  • Rн – термическое сопротивление наружной поверхности стены, Вт/(м2 × °С).

В свою очередь, показатели термического сопротивления равны:

Rм = L / λ 
Rв = 1 / αв
Rн = 1 / αн

  • L – толщина материала, м;
  • λ – теплопроводность материала, Вт/(м × °С)
  • αв – коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м2 × °С);
  • αн – коэффициент теплоотдачи наружной поверхности ограждающей конструкции, Вт/(м2 × °С).

Все параметры подбираются согласно СНиП II-3-79* «Строительная теплотехника».

Теплопотери для многослойных стен рассчитываются аналогичным образом, за исключением того, что значение суммарного термического сопротивление складывается для каждого слоя:

Rобщ = Rв + R1 + R2 + .. + Rн

Иным способом производится расчет тепловых потерь на инфильтрацию, формулу можно найти в СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:

Qi = 0.28 × Gi × c × (tв – tн) × k

  • Gi – расход воздуха, м3/ч;
  • c – удельная теплоемкость воздуха, 1.006 кДж/(кг × °С)
  • tв – температура внутренняя, °С;
  • tн – температура наружная, °С;
  • k – коэффициент учета влияния встречного теплового потока в конструкциях (по умолчанию 0.8).

Расход удаляемого воздуха Gi, не компенсируемый приточным воздухом определяется следующим образом:

Gi = 3 × S

  • 3 – норма воздухообмена для жилых квартир, м3/ч (по СНиП 2.08.01-89* «Жилые здания»);
  • S – площадь помещения, м2.

Расчет тепловых потерь вMS Excel через пол и стены, примыкающие к грунту по методике профессора А.Г. Сотникова.

Очень интересная методика для заглубленных в грунт зданий изложена в статье «Теплофизический расчет теплопотерь подземной части зданий». Статья вышла в свет в 2010 году в №8 журнала «АВОК» в рубрике «Дискуссионный клуб».

Тем, кто хочет понять смысл написанного далее, следует прежде обязательно изучить вышеназванную .

А.Г. Сотников, опираясь в основном на выводы и опыт других ученых-предшественников, является одним из немногих, кто почти за 100 лет попытался сдвинуть с мертвой точки тему, волнующую многих теплотехников. Очень импонирует его подход с точки зрения фундаментальной теплотехники. Но сложность правильной оценки температуры грунта и его коэффициента теплопроводности при отсутствии соответствующих изыскательских работ несколько сдвигает методику А.Г. Сотникова в теоретическую плоскость, отдаляя от практических расчетов. Хотя при этом, продолжая опираться на зональный метод В.Д. Мачинского, все просто слепо верят результатам и, понимая общий физический смысл их возникновения, не могут определенно быть уверенными в полученных числовых значениях.

В чем смысл методики профессора А.Г. Сотникова? Он предлагает считать, что все теплопотери через пол заглубленного здания «уходят» в глубь планеты, а все потери тепла через стены, контактирующие с грунтом, передаются в итоге на поверхность и «растворяются» в воздухе окружающей среды.

Это похоже отчасти на правду (без математических обоснований) при наличии достаточного заглубления пола нижнего этажа, но при заглублении менее 1,5…2,0 метров возникают сомнения в правильности постулатов…

Несмотря на все критические замечания, сделанные в предыдущих абзацах, именно развитие алгоритма профессора А.Г. Сотникова видится весьма перспективным.

Выполним расчет в Excel теплопотерь через пол и стены в грунт для того же здания, что и в предыдущем примере.

Записываем в блок исходных данных размеры подвальной части здания и расчетные температуры воздуха.

Далее необходимо заполнить характеристики грунта. В качестве примера возьмем песчаный грунт и впишем в исходные данные его коэффициент теплопроводности и температуру на глубине 2,5 метров в январе. Температуру и коэффициент теплопроводности грунта для вашей местности можно найти в Интернете.

Стены и пол выполним из железобетона (λ
=1,7
Вт/(м·°С)) толщиной 300мм (δ

=0,3
м) с термическим сопротивлением R

=
δ

λ
=0,176
м 2 ·°С/Вт.

И, наконец, дописываем в исходные данные значения коэффициентов теплоотдачи на внутренних поверхностях пола и стен и на наружной поверхности грунта, соприкасающегося с наружным воздухом.

Полы по грунту

Программа выполняет расчет в Excel по нижеприведенным формулам.

Площадь пола:

F пл
=
B
*A

Площадь стен:

F ст
=2*
h

*(B

+
A

)

Условная толщина слоя грунта за стенами:

δ
усл

=
f
(h

H

)

Термосопротивление грунта под полом:

R
17

=(1/(4*λ гр
)*(
π
F
пл

) 0,5

Теплопотери через пол:

Q
пл

=
F
пл

*(t
в


t
гр

)/(R
17

+
R
пл

+1/α в
)

Термосопротивление грунта за стенами:

R
27

=
δ
усл

/λ гр

Теплопотери через стены:

Q
ст

=
F
ст

*(t
в


t
н

)/(1/α н
+
R
27

+
R
ст

+1/α в
)

Общие теплопотери в грунт:

Q
Σ

=
Q
пл

+
Q
ст

Возможные варианты утепления пола по грунту

С принципом расчета определились. Но теперь нужно разобраться, а какое возможно сочетание слоев при создании пола по грунту? И какие из них имеет смысл принимать в расчет?

  • В качестве термоизоляционного материала в таких условиях очень часто используется керамзит. Причем, нередко он выступает в роли единственного утеплителя.

(Здесь и дальше будут показаны схемы. Сразу скажем – они даны со значительным упрощением. В частности, на них не указаны слои гидроизоляции. Не из-за того, что они неважны, просто в теплотехнических расчётах их учитывать не имеет смысла – слой слишком тонок, чтобы оказать сколь-нибудь серьезное влияние на общие утеплительные качества всего «пирога» пола.)

Утепление пола по грунту только керамзитом.

Утепление пола по грунту только керамзитом.

Цены на керамзит

керамзит

Идем снизу вверх.

1 – слой уплотненного грунта, на котором возводится пол. В расчет не принимается, так как именно от теплопотерь через грунт (имеющий колоссальную теплоёмкость и способный буквально «высасывать» тепло из дома при некачественном утеплении) и затевается вся термоизоляция.

2 – утрамбованный песчаный или песчано-щебеночный слой. В расчет не принимается, по той же причине, что и грунт.

3 – слой керамзита – вот эту толщину и следует рассчитать. Так как термоизоляционные качества керамзита практически втрое ниже чем, скажем, у минеральной ваты или пенополистирола, толщина этого слоя может потребоваться весьма внушительной.

4 – армированная бетонная стяжка пола. Принимать в расчет – смысла не видно, так как теплопроводность бетона весьма высока. И при толщинах стяжки всего в 50 ÷ 100 мм ее термоизоляционные качества практически не сыграют роли.

5 – финишное покрытие пола. Если применяется натуральная доска, толстая клееная фанера или ОСП, то можно учесть этот слой при проведении расчетов. Термоизоляционные качества древесины – весьма неплохие, и это позволит хоть на сколько-то уменьшить слой керамзитовой засыпки. А условия нередко бывают такие, что каждый миллиметр подъема пола – на счету.

Возможно, вас заинтересует информация о том, как рассчитывается толщина утеплителя для пола в деревянном доме 

Если же в качестве покрытия рассматриваются ламинат, линолеум, и тем более – керамическая плитка, то их вполне можно проигнорировать при расчётах. Или теплопроводность высока, или уж слишком тонкий слой, не играющий никакой роли.

  • Второй вариант – использование плитных утеплительных материалов. Это могут быть, например, пенополистирол различного типа, специальные марки минеральной ваты повышенной плотности, блоки пеностекла и другие утеплители.

Схему можно представить так:

Утепление пола по грунту без использования керамзита

Утепление пола по грунту без использования керамзита

Что здесь появилось на схеме нового:

6 – это так называемая «бетонная подготовка» — тонкий (порядка 30÷50 мм) слой тощего бетона. Удобно в том плане, что по такой поверхности проще выполнять качественную гидроизоляцию, а затем – и  укладку утеплительного материала. Теплотехнических свойств – практически никаких, то есть в расчет не принимается.

7 – слой выбранного утеплительного материала. Именно его толщину и предстоит определить.

Далее, армированная стяжка и финишное покрытие – все без изменений.

  • Третий вариант – комплектное использование керамзита и другого, более эффективного термоизоляционного материала. Качественные утеплители частенько имеют весьма немалую стоимость, и такой подход позволяет добиться определенной экономии средств.
Для термоизоляции пола по грунту используется и керамзит, и другой, более эффективный утеплитель

Для термоизоляции пола по грунту используется и керамзит, и другой, более эффективный утеплитель

Подробнее о том, как производится утепление пола пеноплексом — читайте в специальной статье нашего портала.

По схеме здесь, наверное, пояснять ничего не нужно – все те же слои, что уже упоминались в первых двух вариантах. Для расчёта толщины более дорогого утеплителя придётся заранее прикинуть толщину керамзитовой засыпки.

Для второго и третьего вариантов может применяться и несколько измененная схема. Основное утепление под стяжкой пола не производится. А на самой стяжке уже идет крепление лаг с последующим настилом на них деревянного (фанерного и т.п.) пола. В таком варианте утеплитель (плитный, рулонный или засыпной) укладывается в пространство между лагами. Слой термоизоляции меняет свое положение, но, в принципе, на результат расчёта это не оказывает влияния.

Все, должно быть, встало по местам, и можно переходить уже непосредственно к расчету. То есть – к нашему онлайн-калькулятору. Ниже будет дано несколько пояснений по рабо» те с программой.

1.7 Теплотехнический расчет световых проемов

В практике строительства жилых и общественных зданий применяется одинарное, двойное и тройное остекление в деревянных, пластмассовых или металлических переплетах, спаренное или раздельное. Теплотехнический расчет балконных дверей и заполнений световых проемов, а также выбор их конструкций осуществляется в зависимости от района строительства и назначения помещений.

Требуемое термическое общее сопротивление теплопередаче img-mrWaAR.png, (м 2 ·С)/Вт, для световых проемов определяют в зависимости от величины Dd (таблица 10).

Затем по значению img-msWo2r.pngвыбирают конструкцию светового проема с приведенным сопротивлением теплопередаче img-73YZ5Y.pngпри условии img-Zuz11n.pngimg-8TPBR7.png(таблица 13).

Таблица 13 – Фактическое приведенное сопротивление окон, балконных дверей и фонарей img-gmgPKu.png

Заполнение светового проема

Приведенное сопротивление теплопередаче img-0NpxdT.png, (м 2 ·С)/Вт

в деревянных или ПВХ переплетах

в алюминиевых переплетах

Одинарное остекление в деревянных или пластмассовых переплетах

Одинарное остекление в металлических переплетах

Двойное остекление в спаренных

Двойное остекление в раздельных

Блоки стеклянные пустотные (с шириной швов 6мм) размером: 194 × 194 × 98

0,31 (без переплета)

0,33 (без переплета)

Профильное стекло коробчатого сечения

0,31 (без переплета)

Двойное из органического стекла для зенитных фонарей

Продолжение таблицы 13

Заполнение светового проема

Приведенное сопротивление теплопередаче img-SKPqi1.png, (м 2 ·С)/Вт

в деревянных или ПВХ переплетах

в алюминиевых переплетах

Тройное из органического стекла для

Тройное остекление в раздельно-спаренных переплетах

из обычного стекла

из стекла с твердым селективным

из стекла с мягким селективным

из обычного стекла (с межстекольным расстоянием 6 мм)

из обычного стекла (с межстекольным расстоянием 12 мм)

из стекла с твердым селективным

из стекла с мягким селективным

из стекла с твердым селективным

покрытием и заполнением аргоном

Обычное стекло и однокамерный стеклопакет в раздельных переплетах:

из обычного стекла

из стекла с твердым селективным

из стекла с твердым селективным

покрытием и заполнением аргоном

Обычное стекло и двухкамерный стеклопакет в раздельных переплетах: из обычного стекла

из стекла с твердым селективным

из стекла с мягким селективным

из стекла с твердым селективным

покрытием и заполнением аргоном

Продолжение таблицы 13

Заполнение светового проема

Приведенное сопротивление теплопередаче img-tY7NSk.png, (м 2 ·С)/Вт

в деревянных или ПВХ переплетах

в алюминиевых переплетах

Два однокамерных стеклопакета в

Два однокамерных стеклопакета в

Четырехслойное остекление в двух

Примечания: * − В стальных переплетах.

Для принятой конструкции светового проема коэффициент теплопередачи kок, Вт/(м 2 ·С), определяется по уравнению:

img-9RsZQQ.png.

Пример 5. Теплотехнический расчет световых проемов

Здание жилое, tв = 20С (таблица 1).

Район строительства – г. Пенза.

tхп(0,92) = -29С; tоп = -3,6С; zоп = 222 сут. (приложение А, таблица А.1);

img-mbQE0q.pngС·сут.

Определяем img-rZKinM.png= 0,43 (м 2 ·С)/Вт, (таблица 10).

Выбираем конструкцию окна (таблица 13) в зависимости от величины img-ucmRtM.pngс учетом выполнения условия (7). Таким образом, для нашего примера принимаем окно с двойным остеклением в деревянных раздельных переплетах, с фактическим сопротивлением теплопередаче img-AjCWq0.png= 0,44 (м 2 ·С)/Вт.

Коэффициент теплопередачи остекления (окна) kок определяем по формуле:

img-Z8XxLE.pngВт/(м 2 ·С).

ПРИМЕР ТЕПЛОТЕХНИЧЕСКОГО РАСЧЕТА ПОЛА

А. Исходные данные

Определить, удовлетворяет ли в отношении теплоусвоения требованиям СНиП II-3 конструкция пола жилого здания из поливинилхлоридного линолеума на теплозвукоизолирующей подоснове из стеклянного волокна, наклеенного холодной битумной мастикой на железобетонную плиту перекрытия. Теплотехнические характеристики отдельных слоев конструкции пола (при их нумерации сверху вниз) даны в таблице C.1.

Номер слоя Материал Толщина слоя d, м Плотность материала в сухом состоянии r, кг/м 3 Коэффициенты при условиях эксплуатации А Термическое сопротивление R, м 2 ×°С/Вт
теплопроводности l, Вт/(м×°С) теплоусвоения s, Вт/(м 2 ×°С)
Лицевой слой из линолеума 0,0015 0,33 7,52 0,0045
Подоснова 0,002 0,047 0,92 0,043
Битумная мастика 0,001 0,17 4,56 0,0059
Плита перекрытия 0,14 1,74 16,77 0,08

Б. Порядок расчета

Определим тепловую инерцию слоев пола по формуле (2) СНиП II-3:

Так как суммарная тепловая инерция первых трех слоев D1+D2+D3=0,034+0,04+0,027=0,101 0,5, то показатель теплоусвоения поверхности пола определяем последовательно с учетом четырех слоев конструкции пола с помощью формул (28) и (28а) СНиП II-3, начиная с третьего

Значение показателя теплоусвоения поверхности пола для жилых зданий по таблице II* СНиП II-3 не должно превышать Yn H =12 Вт/(м 2 ×°С), а расчетное значение показателя теплоусвоения данной конструкции Yn=13,2 Вт/(м 2 ×°С). Следовательно, рассматриваемая конструкция пола в отношении теплоусвоения не удовлетворяет требованиям СНиП II-3. Определим показатель теплоусвоения поверхности данной конструкции пола в том случае, если по плите перекрытия будет устроена стяжка из шлакопемзобетона (d=0,02 м, r=1200 кг/м 3 , l=0,37 Вт/(м×°С), s=5,83 Вт/(м 2 ×°С), R=0,054 м 2 ×°С/Вт, D=0,315). Конструкция пола в этом случае будет состоять из пяти слоев.

Так как суммарная тепловая инерция первых четырех слоев D1+D2+D3+D4=0,034+0,04+0,027+0,315=0,416 0,5, то показатель теплоусвоения поверхности пола определяется с учетом пяти слоев конструкции пола.

Определим показатель теплоусвоения поверхности четвертого, третьего, второго и первого слоев пола по формулам (28) и (28а) СНиП II-3:

Таким образом, устройство по плите перекрытия стяжки из шлакопемзобетона (r=1200 кг/м 3 ) толщиной 20 мм уменьшило значение показателя теплоусвоения поверхности пола с 13,2 до 9,4 Вт(м 2 ×°C). Следовательно, эта конструкция пола в отношении теплоусвоения удовлетворяет нормативным требованиям, так как значение показателя теплоусвоения поверхности не превышает Yn H =12 Вт(м 2 ×°C) нормируемого показателя теплоусвоения пола для жилых зданий.

ПРИЛОЖЕНИЕ Т

ПРИМЕР РАСЧЕТА ТЕПЛОУСТОЙЧИВОСТИ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ В ТЕПЛЫЙ ПЕРИОД ГОДА

Определить, удовлетворяет ли требованиям в отношении теплоустойчивости трехслойная железобетонная панель с утеплителем из пенополистирола на гибких связях с габаритными параметрами, принятыми согласно примеру расчета раздела 2 приложения И.

А. Исходные данные

1. Район строительства — г. Ростов-на-Дону.

2. Среднемесячная температура наиболее жаркого месяца (июля) согласно СНиП 23-01 text=23 °С.

3. Максимальная амплитуда суточных колебаний температуры наружного воздуха согласно приложению Г Аt,ext=20,8 °С.

4. Максимальное и среднее значение суммарной (прямой и рассеянной) солнечной радиации для вертикальных поверхностей западной ориентации согласно приложению

Imax=764 Вт/м 2 и Iav=184 Вт/м 2 .

5. Расчетная скорость ветра согласно СНиП 23-01 v=3,6 м/с.

6. Теплотехнические характеристики материалов панели выбираются по условиям эксплуатации А согласно приложению Е:

для железобетонных слоев

Б. Порядок расчета

1. Термические сопротивления отдельных слоев стеновой панели:

внутреннего железобетонного слоя R1=0,1/1,92=0,052 м 2 ×°С/Вт;

слоя пенополистирола R2=0,135/0,041=3,293 м 2 ×°С/Вт;

наружного железобетонного слоя R3=0,065/1,92=0,034 м 2 ×°С/Вт.

2. Тепловая инерция каждого слоя и самой панели:

наружного железобетонного D1=0,052×17,98=0,935 req ограждающей конструкции определяется по формуле (18) СНиП II-3

4. Коэффициент теплоотдачи наружной поверхности ai ограждающей конструкции по летним условиям определяется по формуле (24) СНиП II-3

ai=1,16(5+10 image304.gif)=27,8 Вт/(м 2 ×°С).

5. Расчетная амплитуда колебаний температуры наружного воздуха вычисляется по формуле (20) СНиП II-3

6. Коэффициент теплоусвоения наружной поверхности слоя Y с тепловой инерцией D 2 +ai)/(l+R1ai)=(0,052×17,98 2 +8,7)/(1+0,052×8,7)=17,6 Вт/(м 2 ×°С);

б) для среднего слоя из пенополистирола, имеющего D>1, коэффициент теплоусвоения наружной поверхности слоя принимается равным коэффициенту теплоусвоения материала Y2=s2=0,41 Вт/(м 2 ×°С);

в) для наружного железобетонного слоя

7. Величина затухания расчетной амплитуды колебаний температуры наружного воздуха в ограждающей конструкции вычисляется по формуле (21) СНиП II-3

v=0,9e D/ image306.gif[(s1+ai)(s2+Y1)(s3+Y2)(ae+Y3)]/[(s1+Y1)(s2+Y2)(s3+Y3)ae]=

=0,9e 2,896/ image306.gif[(17,98+8,7)(0,41+17,6)(17,98+0,41)(27,8+11,24)]/

8. Амплитуда колебаний температуры внутренней поверхности стеновой панели определяется по формуле (19) СНиП II-3

что отвечает требованиям норм.

ПРИЛОЖЕНИЕ У

Дата добавления: 2016-10-30 ; просмотров: 2113 | Нарушение авторских прав

Особенности расчета теплопотерь через полы на грунте (утепленные и неутепленные) и полы на лагах

Всю площадь пола следует разделить на 4 зоны. Первые три зоны – это полосы шириной 2м вдоль наружных стен. Четвертая зоны – вся оставшаяся площадь.

Потери теплоты следует определять по формуле

RI н.п. … RIVн.п. – сопротивление теплопередаче соответствующей зоны,

м 2 · 0 С/Вт, пола на грунте неутепленного [ λ≥ 1,2 Вт/(м∙ 0 С)] ,

принимаемые по СНиП 2.04.05-91:

14,2 — ” IV ” (для оставшейся площади пола);

Для утепленных полов на грунте, т.е. при наличии слоев с коэффициентом теплопроводности l 0 С), и стен, расположенных ниже уровня земли, термическое сопротивление каждой зоны Rут.п., м 2 0 С/Вт, определяется по формуле

Rут.п.= Rн.п. + ∑ image147.png

Для пола на лагах Rлаг.ут., м 2 0 С/Вт, следует определять по формуле

Rлаг.ут. = 1,18(Rн.п. + Σ image148.png image108.png),

где δут. и λут. – соответственно толщина, м, и коэффициент теплопроводности

Вт/(м∙ 0 С ) материала утепляющего слоя.

Тема: «Определение расхода теплоты на нагревание наружного воздуха, инфильтрующегося в помещение»

Расход теплоты Qi, Вт, на нагревание инфильтрующегося наружного воздуха следует определять по формуле

где Gi – расход инфильтрующегося воздуха, кг/ч, через ограждающие конст-

рукции помещения, определяемый по формуле (3);

с – удельная теплоемкость воздуха, 1 кДж/(кг о С);

tint, text– расчетные температуры воздуха, о С, соответственно в помещении

(средняя, с учетом повышения для помещений высотой более 4 м )

и наружного воздуха в холодный период года (параметры Б);

k – коэффициент учета влияния встречного теплового потока в конст-

рукциях, равный 0,7 для стыков панелей стен и окон с тройными

переплетами, 0,8 — для окон и балконных дверей с раздельными пе-

реплетами и 1,0 — для одинарных окон, окон и балконных дверей со

спаренными переплетами и открытых проемов.

Расход теплоты Qi, Вт, на нагревание инфильтрующегося воздуха в помещениях жилых и общественных зданий при естественной вытяжной вентиляции, не компенсируемого подогретым приточным воздухом, следует принимать равным большей из величин полученным по формулам (1) и (2):

где Lп – расход удаляемого воздуха, м 3 /ч, не компенсируемый подогретым при-

точным воздухом; для жилых зданий – удельный нормативный расход

3 м 3 /ч на 1 м 2 жилых помещений;

r –плотность воздуха в помещение, кг/м 3 , может быть принята 1,2.

Расход инфильтрующегося воздуха в помещении Gi, кг/ч, через неплотности наружных ограждений следует определять по формуле

где a1 – площадь световых проемов(окон, балконных дверей, фонарей), м 2 ;

a2 – площадь стен (без площади световых проемов), м 2 ;

a3 – площадь щелей, неплотностей и проемов в наружных ограждающих

l – длина стыков стеновых панелей, м;

Dpi, Dp1 – расчетная разность между давлениями на наружной и внутренней

поверхностях ограждающих конструкций соответственно на

расчетном этаже и на уровне первого этажа при Dp1=10 Па;

Rinf – сопротивление воздухопроницанию, м 2 ч Па/кг;

Gн – нормативная воздухопроницаемость наружных ограждающих кон

струкций, кг/(м 2 ч).

Расчетная разность давлений Δpi определяется по формуле

где H – высота здания, м, от уровня средней планировочной отметки зем

ли до верха карниза, центра вытяжных отверстий фонаря или

hi – расчетная высота, м, от уровня земли до верха окон, балконных

дверей, ворот, проемов или до оси горизонтальных и середины

вертикальных стыков стеновых панелей;

gext и gint— удельный вес, Н/м 3 , соответственно наружного воздуха и воздуха

в помещении, определяемый по формуле g= image149.png

n – скорость ветра, м/с;

cе,n, cе,р –аэродинамические коэффициенты соответственно для наветрен-

ной и подветренной поверхностей ограждений здания (принима-

k1 – коэффициент учета изменения скоростного давления ветра в зави-

симости от высоты здания по СНиП 2.01.07-85;

pint – условно-постоянное давление воздуха в здании, Па:

где rн5 – плотность наружного воздуха при температуре + 5 o С, кг/м 3 ;

rint – плотность воздуха внутри помещения, кг/м 3 .

H, hi –– то же, что и в формуле (4).

В соответствии со СНиП 23-02-2003 «Тепловая защита зданий» сопротивление воздухопроницанию ограждающих конструкций за исключением заполнения световых проемов (окон) зданий и сооружений R image150.png, (м 2 ∙ч·Па)/кг должна быть не менее требуемого R image151.png, определяемого по формуле

R image152.png= image153.png,

где Δp – разность давления воздуха на наружной и внутренней поверхнос-

тях ограждающих конструкций, Па;

Gн — нормируемая воздухопроницаемость ограждающих конструкций,

кг/(м 2 ∙ч); принимается по табл. 11 СНиПа 23-02-2003;

Cопротивление воздухопроницанию окон и балконных дверей жилых и общественных зданийзданий и сооружений, а также окон и фонарей производственных зданий R image154.png, (м 2 · ∙ ч·Па)/ кг, должно быть не менее требуемого, определяемого по формуле

R image155.png= ( image156.png)·( image157.png) 2/3 ,

где Δр = 10 Па – разность давлений воздуха на наружной и внутренней по-

верхностях светопрозрачных ограждающих конструкций,

при которой определяется сопротивление воздухопроница-

нию image158.png

Тема: » Определение теплопоступлений в помещение».

1. Основные виды и источники теплопоступлений.

2. Определение теплопоступлений в помещение

3. Поступление теплоты за счет солнечной радиации.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8540 — _plus.gif | 8120 — _minus.gif или читать все.

188.64.174.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...