Создание кавитационного теплогенератора своими руками: преимущества, строение, принцип работы и пошаговая инструкция

К таким устройствам относится кавитационный теплогенератор, работа которого заключается в формировании пузырьков газа, за счет которых и возникает выделение тепла.

Устройство и принцип работы

Принцип действия кавитационного теплогенератора заключается в эффекте нагрева за счет преобразования механической энергии в тепловую. Теперь более детально рассмотрим само кавитационное явление. При создании избыточного давления в жидкости возникают завихрения, из-за того, что давление жидкости больше чем у содержащегося в ней газа, молекулы газа выделяются в отдельные включения – схлопывание пузырьков. За счет разности давления вода стремиться сжать газовый пузырь, что аккумулирует на его поверхности большое количество энергии, а температура внутри достигает порядка 1000 — 1200ºС.

При переходе кавитационных полостей в зону нормального давления пузырьки разрушаются, и энергия от их разрушения выделяется в окружающее пространство. За счет чего происходит выделение тепловой энергии, а жидкость нагревается от вихревого потока. На этом принципе основана работа тепловых генераторов, далее рассмотрите принцип работы простейшего варианта кавитационного обогревателя.

Простейшая модель

Принцип работы кавитационного теплогенератораРис. 1: Принцип работы кавитационного теплогенератора

Посмотрите на рисунок 1, здесь представлено устройство  простейшего кавитационного теплогенератора, который  заключается в нагнетании насосом воды к месту сужения трубопровода. При достижении водяным потоком сопла давление жидкости значительно возрастает и начинается образование кавитационных пузырьков. При выходе из сопла пузырьки выделяют тепловую мощность, а давление после прохождения сопла значительно снижается. На практике может устанавливаться несколько сопел или трубок для повышения эффективности.

Идеальный теплогенератор Потапова

Идеальным вариантом установки считается теплогенератор Потапова, который имеет вращающийся диск (1) установленный напротив стационарного (6). Подача холодной воды осуществляется с трубы расположенной внизу (4) кавитационной камеры (3), а отвод уже нагретой с верхней точки (5) той же камеры. Пример такого устройства приведен на рисунке 2 ниже:

Кавитационный теплогенератор ПотаповаРис. 2: кавитационный теплогенератор Потапова

Но широкого распространения устройство не получило из-за отсутствия практического обоснования его работы.

Вихревое устройство: общее понятие

Подобная установка конструктивно достаточно проста. Она используется для эффективного и выгодного отопления здания с минимальными финансовыми затратами. Экономичность обуславливается специальным нагревом воды через кавитацию. Такой метод заключается в создании мелких пузырьков из пара в зоне сниженного давления рабочей жидкости, которое обеспечивается специальными звуковыми колебаниями, функционированием насоса.

Кавитационный нагреватель справляется с переработкой механической энергии в тепловой поток, что немаловажно для промышленных объектов. В них нагревательные элементы периодически выходят из строя, поскольку функционируют с жидкостями большой разности по температуре.

Именно такие кавитаторы выступают надежной заменой устройствам, работа которых зависит от твердых видов топлива.

В этом видео вы узнаете, как устроен теплогенератор:

Для публикации сообщений создайте учётную запись или авторизуйтесь

Вы должны быть пользователем, чтобы оставить комментарий

Принцип работы

Работает генератор следующим образом. Вода (или любой другой используемый теплоноситель) попадает в кавитатор. Электродвигатель затем раскручивает кавитатор, в котором при этом схлопываются пузырьки – это и есть кавитация, отсюда и название элемента. Так вся жидкость, которая в него попадает, начинает греться.

Электроэнергия, требуемая для работы генератора, тратится на три вещи:

  • На образование звуковых колебаний.
  • На то, чтобы преодолеть силу трения в устройстве.
  • На нагревание жидкости.

При этом как утверждают создатели устройства, в частности, сам молдаванин Потапов, для работы используется возобновляемая энергия, хотя не совсем понятно, откуда она появляется. Как бы то ни было, дополнительного излучения не наблюдается, следовательно, можно говорить чуть ли не о стопроцентном КПД, ведь почти все энергия тратится на нагрев теплоносителя. Но это в теории.

Кавитатор для воды своими руками

Плюсы и минусы кавитационных источников энергии

Кавитационные нагреватели – это простые устройства, которые преобразуют механическую энергию рабочей жидкости в тепловую. По сути, данный прибор состоит из центробежного насоса (для ванной, скважин, систем водоснабжения частных домов), который имеет низкий показатель эффективности. Преобразование энергии в кавитационном нагревателе широко используется в промышленных предприятиях, где нагревательные элементы могут быть повреждены при контакте с рабочей жидкостью, у которой серьезная разность в температурах.

Фото – Конструкция кавитационного теплогенератора

Плюсы устройства:

Эффективность; Экономичность теплоснабжения; Доступность; Можно собрать своими руками домашний прибор производства тепловой энергии. Как показывает практика, самодельный прибор не уступает купленному по своим качествам.

Минусы генератора:

Шумность; Сложно достать материалы для производства; Мощность слишком большая для небольшого помещения до 60-80 квадратных метров, бытовой генератор проще купить; Даже мини-приборы занимают много места (в среднем как минимум полтора метра комнаты).

Видео: устройство кавитационного теплогенератора

Вихревая труба ранке чертеж

ВТР – это устройства, которые преобразовывают электрическую энергию в тепловую. История их изобретения касается первой половины прошлого века. Позже было налажено массовое производство. Но сейчас вихревая труба Ранке своими руками – это реальность. При этом для изготовления такого устройства понадобится немногое. Что для этого необходимо, следует разобраться. Также читают: «Делаем бойлер косвенного нагрева своими руками«.

Для чего используется?

Приведем небольшой пример. В стране есть масса предприятий, которые по тем или иным причинам не могут позволить себе газовое отопление: или магистрали нет неподалеку, или еще что-то. Тогда что остается? Обогреть электричеством, но тарифы на такого рода отопление могут ужаснуть. Вот тут и выручает чудо-прибор Потапова. При его использовании затраты на электроэнергию останутся теми же, КПД, разумеется, тоже, так как больше сотни ему все равно не быть, а вот КПД в плане финансовом будет составлять от 200% до 300%.

Получается, что эффективность вихревого генератора – 1.2-1.5.

Виды

Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:

  • Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
  • Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
  • Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.

Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.

Роторный теплогенератор

Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.

Конструкция генератора роторного типаРис. 3: конструкция генератора роторного типа

Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.

Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:

Дисковый теплогенераторРис. 4: дисковый теплогенератор

Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.

Трубчатые

Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.

В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.

Ультразвуковые

Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.

Принцип работы ультразвукового теплогенератораРис. 5: принцип работы ультразвукового теплогенератора

Далее пузырьки уносятся водным  потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.

Необходимые инструменты

Что же, пора приступать к самостоятельному изготовлению генератора. Давайте посмотрим, что нам потребуется:

  • Шлифовальная машинка угловая, или турбинка;
  • Железный уголок;
  • Сварка;
  • Болты, гайки;
  • Электрическая дрель;
  • Ключи 12-13;
  • Сверла к дрели;
  • Краска, кисточка и грунтовка.

Устанавливаем насос

Далее мы должны выбрать «правильный» водяной насос. Ассортимент этих инструментов сегодня настолько широк, что можно найти себе модель любой силы и габаритов. Нам же нужно обращать внимание лишь на две вещи:

  • Сможет ли двигатель раскрутить этот насос;
  • Является ли он (насос) центробежным.

Далее насос устанавливается все в том же каркасе, при необходимости крепятся дополнительные крепежные элементы.

У вихревого генератора корпус представляет собой цилиндр, закрытый с обеих сторон. По боками должны находиться сквозные отверстия, посредством которых устройство будет подсоединяться к отопительной системе. Но главная особенность конструкции – внутри корпуса: сразу возле входного отверстия размещен жиклер. Отверстие жиклера должно подбираться чисто индивидуально.

Кавитатор для воды своими руками

Обратите внимание! Желательно при этом, чтобы отверстие жиклера было вдвое меньше, чем 1/4 общего диаметра цилиндра. Если отверстие будет меньшим, то вода не сможет проходить сквозь него в необходимом количестве и насос начнет греться. Более того, внутренние элементы начнут разрушаться кавитацией.

Для изготовления корпуса нам потребуются следующие инструменты:

  1. Железная труба с толстыми стенками диаметром около 10 см;
  2. Муфты для соединения;
  3. Сварка;
  4. Несколько электродов;
  5. Турбинка;
  6. Пара патрубков, в которых проделана резьба;
  7. Электрическая дрель;
  8. Сверла;
  9. Ключ разводной.

Теперь – непосредственно к процессу изготовления.

  1. Для начала отрезаем кусок трубы длиной порядка 50-60 см и делаем на ее поверхности внешнюю проточку примерно на пол толщины, 2-2.5 см. нарезаем резьбу.
  2. Берем еще два куска этой же трубы, длиной по 5 см каждый, и делаем из них пару колец.
  3. Затем берем металлический лист с такой же толщиной, какая и у трубы, вырезаем из нее своеобразные крышки, привариваем их там, где резьба не делалась.
  4. По центру крышек делаем два отверстия – одно из них по окружности патрубка, второе – по окружности жиклера. Внутри крышки рядом с жиклером просверливаем фаску таким образом, чтобы получилась форсунка.
  5. Подключаем генератор к отопительной системе. патрубок возле форсунки подсоединяем к насосу, но только к тому отверстию, откуда под напором поступает вода. Второй патрубок соединяем с входом в отопительную систему, выход же необходимо подсоединить к входу насоса.

Насос будет создавать давление, которое, воздействуя на воду, заставит ее проходить через форсунку нашей конструкции. В специальной камере вода будет перегреваться ввиду активного перемешивания, после чего подается непосредственно в отопительный контур. Дабы можно было регулировать температуру, вихревой теплогенератор своими руками должен оснащаться специальным запирающим устройством, располагающимся рядом с патрубком. Если несколько прикрыть запор, то конструкция будет дольше перегонять воду по камере, следовательно, из-за этого температура поднимется. Таким образом и работает такого рода обогреватель.

Про другие способы альтернативного отопления читайте тут

Применение

В промышленности  и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:

  • Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
  • Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
  • Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.

Войти

Уже есть аккаунт? Войти в систему.

Войти

  • Последние посетители   0 пользователей онлайн

    Ни одного зарегистрированного пользователя не просматривает данную страницу

  • Активность
  • Главная
  • Проекты и готовые изделия
  • Безумные идеи
  • Вихревая трубка для получения сверхнизких температур

Плюсы и минусы

В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.

К плюсам таких устройств следует отнести:

  • Куда более эффективный механизм получения тепловой энергии;
  • Расходует значительно меньше ресурсов, чем топливные генераторы;
  • Может применяться для обогрева как маломощных, так и крупных потребителей;
  • Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.

К недостаткам кавитационных теплогенераторов следует отнести:

  • Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
  • Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
  • Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).

Критерии выбора

При выборе устройства кавитации учитывают следующие моменты:

  1. Важно подобрать конструкцию в соответствии с условиями эксплуатации. Следует учесть масштабы отапливаемого пространства, возможности теплоизоляции помещений, климатические особенности местности в межсезонье и зимой.
  2. Стоит решить вопросы комплектации при приобретении стандартного оборудования. В этом случае, желательно, чтобы изделие было укомплектовано датчиками защиты и приборами контроля тепла. Оптимальный вариант – приобретение техники с автоматическим блоком контроля и управления, также стоит заказать услугу «монтаж под ключ».
  3. В случае приобретения оборудования по отдельным элементам, необходимо четко знать все особенности каждого компонента системы.

Если планируется самостоятельное изготовление, важно тщательно изучить схемы и вооружиться рекомендациями специалистов, далее приступают к выбору модели.

Разговор о вечных двигателях: научные небылицы

Виктор Шаубергер

Австрийский физик Виктор Шаубергер в бытность лесником разработал любопытную систему сплава брёвен. По внешнему виду напоминала изгибы натуральных рек, а не прямую линию. Двигаясь по столь своеобразной траектории, дерево быстрее достигало места назначения. Шаубергер пояснял это снижением сил гидравлического трения.

Ходят слухи, что Шаубергер заинтересовался вихревым движением жидкости. Австрийские любители пива на соревнованиях раскручивали бутылку, чтобы придать вращательное движение напитку. Пиво быстрее залетало в брюхо, хитрец выигрывал. Шаубергер самостоятельно повторил трюк и убедился в эффективности.

Не нужно путать описанный случай с вихрем сточной воды, всегда закручивающейся в одном направлении. Сила Кориолиса обусловлена вращением Земли и замечена, как считается, Джованни Баттиста Риччоли и Франческо Мариа Гримальди в 1651 году. Явление объяснено и описано в 1835 году Гаспаром-Густавом Кориолисом. В начальный момент времени за счёт случайного движения потока воды происходит отдаление от центра воронки, траектория закручивается по спирали. За счёт давления воды процесс набирает силу, образуется конусовидное углубление на поверхности.

Виктор Шаубергер ориентировочно 10 мая 1930 года получил патент Австрии за номером 117749 на турбину специфичной конструкции в виде заостряющегося бура. По словам учёного, в 1921 году на её основе сделан генератор, снабжавший энергией целую ферму. Шаубергер утверждал, что КПД устройства близок к 1000% (три нуля).

  1. Вода закручивалась по спирали на входе в патрубок.
  2. На входе стояла упомянутая турбина.
  3. Направляющие спирали совпадали с формой потока, в результате осуществлялась максимально эффективная передача энергии.

Все прочее о Викторе Шаубергере сводится к научной фантастике. Утверждали что он изобрёл двигатель Репульсион, приводивший в движение летающую тарелку, защищавшую Берлин в период Второй мировой войны. По окончании боевых действий комиссовался и отказался делиться собственными открытиями, способными принести большой вред миру на Земле. Его история, как две капли воды, напоминает случившееся с Николой Теслой.

Считается, что Шаубергер собрал первый кавитационный теплогенератор. Имеется фото, где он стоит рядом с этой «печью». В одном из последних писем утверждал, что открыл новые субстанции, делающие возможными невероятные вещи. К примеру, очистку воды. Одновременно утверждая, что его воззрения поколеблют основы религии и науки, предрекал победу «русским». Сегодня сложно судить, насколько оставался приближен к реалиям учёный за полгода до смерти.

Ричард Клем и вихревой двигатель

Ричард Клем (Richard Clem) по собственным словам на исходе 1972 года испытывал асфальтный насос. Его насторожило странное поведение машины после выключения. Начав эксперименты с горячим маслом, Ричард быстро пришёл к выводу, что налицо нечто вроде вечного двигателя. Специфичной формы ротор из конуса, прорезанного спиральными каналами, снабжён разбегающимися форсунками. Раскрученный до некоторый скорости, сохранял движение, успевая приводить в действие масляный насос.

Уроженец Далласа задумал пробный пробег в 600 миль (1000 км) до Эль Пасо, потом решился опубликовать изобретение, но доехал только до Абилена, свалив неудачу на слабый вал. В заметках по этому поводу говорится, что конус требовалось раскрутить до некоторой скорости, а масло нагреть до 150 градусов Цельсия, чтобы все заработало. Устройство демонстрировало среднюю мощность в 350 лошадиных сил при массе 200 фунтов (90 кг).

Насос работал на давление 300 – 500 фунтов на квадратный дюйм (20 – 30 атм.), и чем выше оказывалась плотность масла, тем резвее крутился конус. Ричард вскоре умер, а наработки изъяты. Патент под номером US3697190 на асфальтный насос легко найти в интернете, но Клем на него не ссылался. Нет гарантий, что «работоспособная» версия не изъята ранее из документации бюро. Энтузиасты и сегодня строят двигатели Клема и демонстрируют принцип действия на Ютубе.

Разумеется, это лишь подобие конструкции, изделие неспособно для себя создавать свободную энергию. Клем говорил, что первый двигатель ни на что не годился, пришлось обойти 15 компаний в поисках финансирования. Мотор работает на масле для жарки, температуры в 300 градусов не выдерживает автомобильное. По заявлениям репортёров, аккумулятор на 12 В считается единственным видимым со стороны источником питания устройства.

Двигатель занесли в кавитационные по простой причине: периодически уже горячее масло требовалось охлаждать через теплообменник. Следовательно, внутри нечто совершало работу. Подумав, исследователи отнесли это на эффект кавитации у входа в насос и внутри распределительной системы трубок. Подчеркнем: «Ни один двигатель Ричарда Клема, изготовленных сегодня, не работоспособен».

Несмотря на это, Российское Энергетическое Агентство в базе данных опубликовало информацию (energy.csti.yar.ru/documents/view/3720031515) с оговоркой, что конструкция двигателя (им) напоминает турбину Николы Теслы.

КТГ своими руками

Наиболее простым вариантом для реализации в домашних условиях является кавитационный генератор трубчатого типа с одним или несколькими соплами для нагревания воды. Поэтому разберем пример изготовления именно такого устройства, для этого вам понадобится:

  • Насос – для нагревания обязательно выбирайте тепловой насос, который не боится постоянного воздействия высоких температур. Он должен обеспечивать рабочее давление на выходе в 4 – 12атм.
  • 2 манометра и гильзы для их установки – размещаются с двух сторон от сопла для измерения давления на входе и выходе из кавитационного элемента.
  • Термометр для измерения величины нагрева теплоносителя в системе.
  • Клапан для удаления лишнего воздуха из кавитационного теплогенератора. Устанавливается в самой верхней точке системы.
  • Сопло – должно иметь диаметр проходного отверстия от 9 до 16мм, делать меньше не рекомендуется, так как кавитация может возникнуть уже в насосе, что значительно снизит срок его эксплуатации. По форме сопло может быть цилиндрическим, коническим или овальным, с практической точки зрения вам подойдет любое.
  • Трубы и соединительные элементы (радиаторы отопления при их отсутствии ) – выбираются в соответствии с поставленной задачей, но наиболее простым вариантом являются пластиковые трубы под пайку.
  • Автоматика включения/отключения кавитационного теплогенератора – как правило, подвязывается под температурный режим, устанавливается на отключение примерно при 80ºС и на включение при снижении менее 60ºС. Но режим работы кавитационного теплогенератора вы можете выбрать самостоятельно.

Схема кавитационного теплогенератораРис. 6: схема кавитационного теплогенератора

Перед соединением всех элементов желательно нарисовать схему их расположения на бумаге, стенах или на полу. Места расположения необходимо размещать вдали от легковоспламеняемых элементов или последние нужно убрать на безопасное расстояние от системы отопления.

Соберите все элементы, как вы изобразили на схеме, и проверьте герметичность без включения генератора. Затем опробуйте в рабочем режиме кавитационного теплогенератора, нормальным нарастанием температуры жидкости считается 3- 5ºС за одну минуту.

Список использованной литературы

  • Акуличев В. А. «Кавитация в криогенных и кипящих жидкостях» 1978
  • Корнфельд М. «Упругость и прочность жидкостей»  1951
  • Федоткин И. М., Гулый И. С. «Кавитация, кавитационная техника и технология, их использование в промышленности» 1997
Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...