Расчёт и Подбор — Теплообменника для системы отопления

Где применяется теплообменник для горячей воды от отопления и как выполнить его подбор и расчет. Принцип работы. Делаем обменник для гвс своими руками. Горячее водоснабжение частного дома через бытовой и водяной вариант.

Введение

Теплообменный аппарат – это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации – проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

Что такое теплообменник

Прежде чем выполнять расчет теплообменника, давайте вспомним, а что же это за устройство такое? Тепломассообменный аппарат (он же теплообменник, он же теплообменный аппарат, или ТОА) – это устройство для передачи теплоты от одного теплоносителя другому. В процессе изменения температур теплоносителей меняются также их плотности и, соответственно, массовые показатели веществ. Именно поэтому такие процессы называют тепломассообменными.

расчет теплообменника

Расчёт и Подбор Теплообменника для системы отопления

calculation.png

Расчёт для ГВС парал. схемы

calculation.png

Расчёт для Отопления

calculation.png

Расчёт для ГВС двухступ. схемы

naznachenie.png

princip.png

konstruktsiya.png

Устройство и конструкция

kharakteristiki.png

nastroika.png

remont.png

ustanovka.png

Установка и подключение

znat.png

norm.png

buy.png

Данный online расчёт теплообменника сформирует запрос на подбор теплообменного аппарата для системы отопления, а также отправит его производителям пластинчатых теплообменников, разумеется при вашем желании.

Базовые понятия теплообмена для расчета

Расчет теплообменников производится при использовании базовой информации о теплообменных законах.

В этой статье рассмотрим некоторые понятия, применяемые при таких расчетах.

  • Удельная теплоемкость является количеством теплоэнергии, требуемой для того чтобы нагреть 1 килограмм вещества на 1 градус Цельсия. На основании сведений о теплоемкости показывается то, насколько сильно аккумулируется тепло. Для расчетов теплоэнергии берется среднее значение теплоемкости в определенном интервале температурных показателей.
  • Количество теплоэнергии, нужное для того чтобы нагреть 1 кг вещества от нулевой до требуемой температуры, называется удельной энтальпией.
  • Удельная теплота химических превращений является количеством теплоэнергии, выделяемой в процессе химической трансформации какой-либо единицы веса вещества.
  • Удельная теплота фазовых превращений определяет количество тепловой энергии, поглощаемое или выделяемое при превращении какой-либо единицы массы вещества из твердого в жидкое, из жидкого в газообразное агрегатное состояние и т.д.

Онлайн калькулятор расчета теплообменнника от поможет получить решение через 15 минут. Или вы можете воспользоваться теорией для теплообменника пластинчатого типа, которая изложена ниже в этой статье, и произвести необходимые расчеты самостоятельно.

Виды теплообмена

Теперь поговорим о видах теплообмена – их всего три. Радиационный – передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена – конвекционного. Конвекция бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.

Однако самый эффективный способ передачи теплоты – это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction – “проводимость”). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА – пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, – это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.

Методы составления теплового баланса

Тепловой баланс может быть составлен внешним или внутренним методом. Первый связан с использованием величин удельных энтальпий, второй – с использованием величин теплоемкостей.

Для расчета тепловой нагрузки при внутреннем методе применяются различные формулы, что зависит от того, каким образом происходит протекание теплообменных процессов.

Если при теплообменном процессе не используются никакие превращения, а соответственно тепловые выделения или поглощения, рассчитать тепловую нагрузку можно за следующей формулой

Если при теплообменном процессе конденсируется пара или испаряется жидкость, протекают определенные химические реакции, тепловой баланс вычисляется по следующей формуле

Основанием для расчета теплового баланса в случае применения внешнего метода выступает факт поступления или выхода равного количества энергии в теплообменное устройство за определенную единицу времени. Внутренний метод отличается от внешнего тем, что при первом используются данные о процессах теплообмена, а при втором – данные внешних показателей.

Тепловой баланс по внешнему методу вычисляется таким образом:

Величина Q1 определяет количество энергии, поступающей в устройство и выходящей из него за единицу времени.

Для установления количества тепловой энергии, передающегося между различными средами, необходимо вычислить разницу энтальпий с использованием формулы

Теплообменный процесс может происходить и с использованием определенных химических или фазовых превращений. При этом количество тепловой энергии вычисляется за формулой

Расчёт теплообменника для системы отопления

Рассчитывая пластинчатый теплообменник пренебрегают незначительными потерями с корпуса считая, что всё тепло отданное теплоносителем в греющем контуре переходит к теплоносителю в нагреваемом контуре, поэтому в расчёте всегда должен соблюдаться тепловой баланс.

Проверить правильность теплового баланса между греющим и нагреваемым контуром можно по простой формуле.

Q [кВт] = 1.163 · G [т/ч] · dt [°C]

Полученные значения количества тепла после подстановки параметров греющего и нагреваемого контуров должны быть равны.

При расчёте пластинчатого теплообменника для системы отопления исходными являются величины тепловой мощности системы отопления и расчётный температурный график системы отопления и источника тепла. В результате расчёта определят расход теплоносителя в греющем и нагреваемом контурах.

Основной особенностью расчёта теплообменника для системы отопления является то, что теплообменный аппарат должен обеспечивать корректную работу как на максимальном, так и на переходном режимах эксплуатации.

Максимальным режимом при подборе теплообменника считается режим с расчётной для системы отопления температурой наружного воздуха (для Киева это -22°C). В расчётном режиме от источника тепла приходит теплоноситель с максимальной температурой на пике температурного графика (если источником является тепловая сеть, то это может быть 120/70°C, то есть в подаче 120°C, а в обрате 70 °C, а в автономной котельной может быть принят график 95/70 °C), так и в систему отопления вода поступает с максимальной температурой на пике температурного графика например 90/70°C или 80/60 °C, в зависимости от того какой принят при её расчёте.

Переходным режимом считается режим со средней температурой наружного воздуха за отопительный период в местности где предполагается установка теплообменника (для Киева это -0.1°C). Температуры теплоносителя в переходном режиме на вводе источника тепла и на входе в систему отопления соответственно ниже и определяются по температурному графику при соответствующей температуре наружного воздуха.

Для жителей Украины доступна опция выбора города, при этом температуры наружного воздуха для расчётного и переходного режимов будут выбраны автоматически по ДСТУ-Н Б В.1.1-27:2010 «Строительная климатология», а для жителей других стран придётся ввести температуры вручную.

Несколько распространённых ошибок при заполнении формы расчёта

1 Температура греющей воды на выходе из теплообменника должна быть больше температуры нагреваемой воды на входе в него на всех режимах эксплуатации. В противном случае теплообменный аппарат получится бесконечно больших размеров.

Это означает что если у вас температурный график работы источника тепла составляет 130/70°C, а расчётный температурный график системы отопления 90/70°C, то либо следует принять более высокую температуру греющей воды на выходе из теплообменника, например 130/80°C, либо принять более низкий температурный график для системы отопления например 80/60°C. Повышение температуры в обратном трубопроводе источника тепла при независимом подключении системы отопления на 5-10°C разрешается строительными нормами (ДБН).

2 Не задавайте допустимые потери давления в теплообменнике ниже 10кПа (1м.вод.ст), если это не принципиальное условие. Чем меньше вы задали допустимые потери давления, тем большим будет теплообменный аппарат и соответственно большей его цена.

Тепловой и конструктивный расчет

Любой расчет рекуперативного теплообменника можно провести на основе результатов теплового, гидравлического и прочностного вычислений. Они являются основополагающими, обязательны при проектировании нового оборудования и ложатся в основу методики расчета последующих моделей линейки однотипных аппаратов. Главной задачей теплового расчета ТОА является определение необходимой площади теплообменной поверхности для устойчивой работы теплообменника и поддержания необходимых параметров сред на выходе. Довольно часто при таких расчетах инженеры задаются произвольными значениями массогабаритных характеристик будущего оборудования (материал, диаметр труб, размеры пластин, геометрия пучка, тип и материал оребрения и др.), поэтому после теплового обычно проводят конструктивный расчет теплообменника. Ведь если на первой стадии инженер посчитал необходимую площадь поверхности при заданном диаметре трубы, например, 60 мм, и длина теплообменника при этом получилась порядка шестидесяти метров, то логичнее предположить переход к многоходовому теплообменнику, либо к кожухотрубному типу, либо увеличить диаметр трубок.

расчет кожухотрубного теплообменника

Гидравлический расчет

Гидравлические или гидромеханические, а также аэродинамические расчеты проводят с целью определить и оптимизировать гидравлические (аэродинамические) потери давления в теплообменнике, а также подсчитать энергетические затраты на их преодоление. Расчет любого тракта, канала или трубы для прохода теплоносителя ставит перед человеком первостепенную задачу – интенсифицировать процесс теплообмена на данном участке. То есть одна среда должна передать, а другая получить как можно больше тепла на минимальном промежутке его течения. Для этого часто применяют дополнительную поверхность теплообмена, в виде развитого оребрения поверхности (для отрыва пограничного ламинарного подслоя и усиления турбулизации потока). Оптимальное балансовое соотношение гидравлических потерь, площади теплообменной поверхности, массогабаритных характеристик и снимаемой тепловой мощности является результатом совокупности теплового, гидравлического и конструктивного расчета ТОА.

Поверочный расчет

Поверочный расчет теплообменника проводят в случае, когда надо заложить запас по мощности либо по площади теплообменной поверхности. Поверхность резервируют по разным причинам и в разных ситуациях: если так требуется по техзаданию, если производитель решает внести дополнительный запас для того, чтобы быть точно уверенным в том, что такой теплообменник выйдет на режим, и минимизировать ошибки, допущенные при расчетах. В каких-то случаях резервирование требуется для округления результатов конструктивных размеров, в других же (испарители, экономайзеры) в расчет мощности теплообменника специально вводят запас по поверхности, на загрязнение компрессорным маслом, присутствующим в холодильном контуре. Да и низкое качество воды необходимо принимать во внимание. Через некоторое время бесперебойной работы теплообменников, особенно при высоких температурах, накипь оседает на теплообменной поверхности аппарата, снижая коэффициент теплопередачи и неминуемо приводя к паразитному снижению теплосъёма. Поэтому грамотный инженер, проводя расчет теплообменника «вода-вода», уделяет особое внимание дополнительному резервированию поверхности теплообмена. Поверочный расчет также проводят для того, чтобы посмотреть, как выбранное оборудование будет работать на иных, вторичных режимах. Например, в центральных кондиционерах (приточных установках) калориферы первого и второго подогрева, использующиеся в холодный период года, нередко задействуют и летом для охлаждения поступающего воздуха, подавая в трубки воздушного теплообменника холодную воду. Как они будут функционировать и какие будут выдавать параметры, позволяет оценить поверочный расчет.

тепловой расчет пластинчатого теплообменника

Исследовательские расчеты

Исследовательские расчеты ТОА проводят на основе полученных результатов теплового и поверочного расчетов. Они необходимы, как правило, для внесения последних поправок в конструкцию проектируемого аппарата. Их также проводят с целью корректировки каких-либо уравнений, закладываемых в реализуемой расчетной модели ТОА, полученной эмпирическим путём (по экспериментальным данным). Выполнение исследовательских расчетов предполагает проведение десятков, а иногда и сотен вычислений по специальному плану, разработанному и внедрённому на производстве согласно математической теории планирования экспериментов. По результатам выявляют влияние различных условий и физических величин на показатели эффективности ТОА.

Видео “Как рассчитать теплообменник?”

Автор статьи:команда ООО “Тепло Профи”

Воздушные теплообменники

Один из самых распространённых на сегодняшний день теплообменных аппаратов – это трубчатые оребрённые теплообменники. Их ещё называют змеевиками. Где их только не устанавливают, начиная от фанкойлов (от англ. fan + coil, т.е. “вентилятор” + “змеевик”) во внутренних блоках сплит-систем и заканчивая гигантскими рекуператорами дымовых газов (отбор теплоты от горячего дымового газа и передача его на нужды отопления) в котельных установках на ТЭЦ. Вот почему расчет змеевикового теплообменника зависит от того применения, куда этот теплообменник пойдёт в эксплуатацию. Промышленные воздухоохладители (ВОПы), устанавливаемые в камерах шоковой заморозки мяса, в морозильных камерах низких температур и на других объектах пищевого холодоснабжения, требуют определённых конструктивных особенностей в своём исполнении. Расстояния между ламелями (оребрением) должно быть максимальным, для увеличения времени непрерывной работы между циклами оттайки. Испарители для ЦОДов (центров обработки данных), наоборот, делают как можно более компактными, зажимая межламельные расстояния до минимума. Такие теплообменники работают в «чистых зонах», окруженные фильтрами тонкой очистки (вплоть до класса HEPA), поэтому такой расчет трубчатого теплообменника проводят с упором на минимизацию габаритов.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...