Обратка системы отопления что это такое и почему трубы холодные

Описание двухтрубной системы отопления, виды и преимущества. Описание вертикальной и горизонтальной схемы, а также виды разводки систем и правила ее монтажа

Содержание

Разновидности разводки отопления

В зависимости от способа подвода теплоносителя к радиаторам распространение получили следующие схемы систем обогрева зданий и сооружений:

Данные способы отопления принципиально различаются друг от друга, и каждый обладает как положительными свойствами, так и отрицательными.

Обратка системы отопления что это такое

Зная элементарные принципы устройства отопления, ответить на вопрос, что такое обратка, довольно просто — это трубопровод, по которому выходящий из теплопередающих устройств носитель направляется к котельному оборудованию для последующего нагрева.

Практически в любой обогревательный прибор встроены минимум два патрубка для подключения, а при двухтрубной системе обратный и подающий контуры имеют четкое разграничение (отдельные коллекторы). При однотрубном способе подключения приборы последовательно соединяются друг с другом, поэтому подающим служит трубопровод, подключенный к первой от котла батарее в цепи, а обратным труба, выходящая из последней. При использовании популярной «ленинградки» обраткой следует считать трубопроводный участок после всех обогревателей в цепи.

Многоконтурная схема отопления

Рис. 2 Многоконтурная схема отопления коттеджа — пример (синим отмечена обратка системы отопления)

Об установке дополнительных агрегатов

Как правило, в закрытую или открытую систему радиаторного отопления, где источником тепла служит единственный котел, достаточно установить один циркуляционный насос. В более сложных схемах применяются дополнительные агрегаты для перекачивания воды (их может быть 2 и больше). Их ставят в таких случаях:

  • когда для обогрева частного дома задействовано больше одной котельных установки;
  • если в схеме обвязки участвует буферная емкость;
  • отопительная система имеет несколько ветвей, обслуживающих различных потребителей, — батареи, теплые полы и бойлер косвенного нагрева;
  • то же, с применением гидравлического разделителя (гидрострелки);
  • для организации циркуляции воды в контурах теплых полов.

Правильная обвязка нескольких котлов, работающих на разных видах топлива, требует, чтобы у каждого из них был собственный насосный агрегат, как это показано на схеме совместного подключения электрического и ТТ-котла. Как она функционирует, рассказано в другой нашей статье.

Подающий и обратный трубопроводУдаление страницы

Обвязка электрического и ТТ-котла с двумя перекачивающими устройствами

В схеме с буферной емкостью необходима установка дополнительного насоса, потому что в ней участвуют как минимум 2 контура циркуляции – котловой и отопительный.

Подающий и обратный трубопроводУдаление страницы

Буферная емкость делит систему на 2 контура, хотя на практике их бывает и больше

Отдельная история – сложная схема отопления с несколькими ветвями, реализуемая в больших коттеджах на 2—4 этажа. Здесь может применяться от 3 до 8 перекачивающих устройств (бывает и больше), подающих теплоноситель поэтажно и к разным отопительным приборам. Пример такой схемы показан ниже.

Подающий и обратный трубопроводУдаление страницы

Наконец, второй циркуляционный насос ставится при отоплении дома водяными теплыми полами. Вместе со смесительным узлом он выполняет задачу по приготовлению теплоносителя с температурой 35—45 °С. Принцип работы представленной ниже схемы доступно описан в этом материале .

Этот насосный агрегат заставляет циркулировать теплоноситель по греющим контурам теплых полов

Напоминание. Иногда насосные устройства устанавливать на отопление не нужно вовсе. Дело в том, что большинство электрических и газовых теплогенераторов настенного типа оборудованы собственными перекачивающими агрегатами, встроенными внутрь корпуса.

Как укутывают сталь

Две нитки газопровода состоят из 199 755 двенадцатиметровых труб, сделанных из высокосортной углеродистой стали. Но коль скоро речь идет о соприкосновении с такой химически агрессивной средой, как морская вода, металлу нужна защита. Для начала на внешнюю поверхность трубы наносят трехслойное покрытие из эпоксидного состава и полиэтилена — это делается прямо на заводе-производителе. Там же, кстати, трубу покрывают и изнутри, правда, задача внутреннего покрытия не в защите от коррозии, а в повышении пропускной способности газопровода. Красно-коричневая эпоксидная краска дает очень гладкую, глянцевую поверхность, снижающую, насколько это возможно, трение молекул газа о стенки трубы.

Можно ли укладывать такую трубу на морское дно? Нет, ее требуется дополнительно защищать и усиливать против давления воды и электрохимических процессов. На трубы устанавливают так называемую катодную защиту (наложение отрицательного потенциала на защищаемую поверхность). С определенным шагом к трубам приваривают электроды, соединенные между собой анодным кабелем, который связан с источником постоянного тока. Таким образом, процесс коррозии переносится на аноды, а в защищаемой поверхности проходит только неразрушающий катодный процесс. Но главное, что еще предстоит сделать с трубой, прежде чем она будет готова опуститься на дно, — это обетонирование. На специальных заводах внешнюю поверхность трубы покрывают слоем бетона толщиной 60−110 мм. Покрытие армируется приваренными к корпусу стальными стержнями, в бетон добавляется наполнитель в виде железной руды — для утяжеления. После обетонирования труба приобретает вес около 24 т. У нее появляется серьезная защита против механических воздействий, а дополнительная масса позволяет ей стабильно лежать на дне.

На фото — сварочная станция трубоукладочного судна Castoro Dieci. Сварные стыки пройдут процедуру неразрушающего ультразвукового контроля, затем их защитят с помощью термоусадочного полиэтиленового рукава, металлического кожуха и пеноматериала. Судно Castoro Dieci принадлежит итальянской компании Saipem и предназначено для прокладки участков трубопроводов на прибрежном мелководье. Фактически это плоскодонная несамоходная баржа, которая передвигается только с помощью буксира и якорной лебедки, однако точное позиционирование Castoro Dieci осуществляет самостоятельно за счет восьмиточечной системы якорей.

Однотрубная схема отопительных систем

Подающий и обратный трубопровод системы отопления

Однотрубная система отопления: вертикальная и горизонтальная разводка.

В однотрубной схеме систем отопления подвод горячего теплоносителя (подача) к радиатору и отвод остывшего (обратка) осуществляется по одной трубе. Все приборы относительно направления движения теплоносителя соединены между собой последовательно. Поэтому температура теплоносителя на входе в каждый последующий радиатор по стояку значительно снижается после снятия тепла с предыдущего радиатора. Соответственно теплоотдача радиаторов с удалением от первого прибора снижается.

Такие схемы используются, в основном, в старых системах центрального теплоснабжения многоэтажных зданий и в автономных системах гравитационного типа (естественная циркуляция теплоносителя) в частных жилых домах. Главным определяющим недостатком однотрубной системы является невозможность независимой регулировки теплоотдачи каждого радиатора в отдельности.

Для устранения этого недостатка возможно использование однотрубной схемы с байпасом (перемычкой между подачей и обраткой), но и в этой схеме первый радиатор будет на ветке всегда самый горячий, а последний самым холодным.

Подающий и обратный трубопровод системы отопления

В многоэтажных домах используется вертикальная однотрубная система отопления.

В многоэтажных домах использование такой схемы позволяет экономить на длине и стоимости подводящих сетей. Как правило, отопительная система выполнена в виде вертикальных стояков, проходящих через все этажи здания. Теплоотдача радиаторов рассчитывается при проектировании системы и не может быть отрегулирована с помощью радиаторных вентилей или другой регулирующей арматуры. При современных требованиях к комфортным условиям в помещениях, эта схема подключения приборов водяного обогрева не удовлетворяет требованиям жителей квартир, находящихся на разных этажах, но присоединенных к одному стояку системы отопления. Потребители тепла вынуждены «терпеть» перегрев или недогрев температуры воздуха в переходный осенний и весенний период.

Подающий и обратный трубопровод системы отопления

Отопление по однотрубной схеме в частном доме.

В частных домах однотрубная схема используется в гравитационных отопительных сетях, в которых циркуляция горячей воды осуществляется благодаря дифференциалу плотностей нагретого и остывшего теплоносителей. Поэтому такие системы получили название естественных. Главным плюсом этой системы является энергонезависимость. Когда, например, при отсутствии в системе циркуляционного насоса, подключаемого к сетям электроснабжения и, в случае перебоев с энергопитанием, система отопления продолжает функционировать.

Главным недостатком гравитационной однотрубной схемы подключения является неравномерное распределение температуры теплоносителя по радиаторам. Первые радиаторы на ветке будут самые горячие, а по мере удаления от источника тепла температура будет падать. Металлоемкость гравитационных систем всегда выше, чем у принудительных за счет большего диаметра трубопроводов.

Видео о устройстве однотрубной схемы отопления в многоквартирном доме:

Конструкция обратного трубопровода

Целостная система состоит из многих элементов, без функционирования которых она не будет работать. Рассмотрим подробнее из чего состоит трубопровод обратной воды.

Узел элеватора

Это основа обратного трубопровода и всей системы в целом. Внутри узла есть камера смешивания. В нем горячая жидкость, а также, под высоким давлением вливается по соплу в более прохладную воду из обратки. При этом, часть жидкости, находящейся в обратном трубопроводе, поступает в систему и совершает циркуляцию.

Узел элеватора и его расположение

Узел элеватора и его расположение

В различных точках узла давление распределяется по разному:

  • подача к узлу — 6 кгс/см2;
  • к обратке — 3 кгс/см2.

Узлов элеваторных в здании может устанавливаться несколько. Но только на одном будут врезки ГВС.

Отопительные розливы

Если отопительная и водоснабжающая схема дома с обратным трубопроводом в подвале, отопительные розливы тоже находятся там, их монтаж происходит без уклонов. Розливы делаются диаметром до 50 мм. Стояки присоединяются сваркой либо резьбовым соединением, при помощи тройников.

Отопительные розливы

Отопительные розливы

На розливе верхнем подача осуществляется при постоянном уклоне. Наверху разливной точки помещается бак расширительный, который выполняет функцию сбросника.

Отопительные стояки

Стояки подводятся к прибору отопления. Имеют размер 25-30 см. Между подводок всегда устанавливается байпас. Это специальная перемычка. Она немного меньшего размера, чем сам стояк. Байпасом обеспечивается циркуляция внутри стояка.

Если розлив нижний, перемычку прокладывают следующими способами:

  1. По уровню коллектора на отопительных динамиках.
  2. Наверху здания, под потолком последнего этажа.
  3. На чердаке.

ГВС

Системы водоснабжения устанавливаются под полом или в подвале. Розливы ГВС устанавливаются там же. Их функциональность может быть одинаковой, то есть, к одному и ко второму присоединяют стояки с водозаборными точками. И, раздельной, когда стояки соединяют с розливом подачи.

Розливы ГВС

Розливы ГВС

Стояки в ГВС

Стояки ГВС в диаметре составляют до 32 мм. Они могут быть смонтированы сзади унитаза, при входе в туалет либо на кухне в закрытой нише. Современные полотенцесушители подключаются в системах циркуляции горячей воды.

Как устроена конструкция обратного водопровода можно рассмотреть на фото.

Когда циркуляция в контуре ГВС необходима

Централизованный нагрев воды — это оптимальный способ обеспечения ГВС в больших домах. Система в таком случае обязательно должна включать в себя накопительный водонагреватель либо бойлер косвенного нагрева, используемый в паре с одноконтурным котлом. Это необходимо для того, чтобы потребителям постоянно был доступно определенное количество горячей воды. Емкость бойлера определяется предполагаемым расходом воды. До заданной температуры вода в бойлере нагревается встроенным ТЭНом либо от теплообменника, подключенного к котлу. Когда горячая вода не востребована, система находится в режиме ожидания. Но при открывании крана горячей воды система включается, предоставляя сразу достаточное ее количество. Объемы бойлеров могут быть от нескольких десятков до нескольких сотен литров. При этом в отличие от проточных водонагревателей, величина протока не ограничивается.

Однако система централизованного ГВС тоже имеет свои недостатки, хотя объективно является лучше других. Дело в том, что трубы, которыми подключены точки водоразбора к бойлеру, имеют, как правило, большую протяженность, и вода в них будет остывать, если долго ей не пользоваться. Потребитель, таким образом, оказывается в ситуации, когда при открытии горячей воды какое-то время из крана течет еле теплая или холодная вода. Время ожидания зависит от протяженности труб и может длиться до 30 секунд. Это слишком долго и к тому же расточительно. Причем речь идет не о потере нескольких десятков литров холодной воды, а о потере воды предварительно нагретой. В этом случае помочь может только циркуляция воды в контуре ГВС.

Выбор типа разводки стояков для эффективного отопления домаДвухконтурные котлы и колонки, а также электрические проточные водонагреватели тоже могут работать в системах централизованного горячего водоснабжения дома, но не способны делать это экономично и комфортно для потребителя. Их целесообразно использовать в маленьких коттеджах, где точек водоразбора немного и все они сконцентрированы возле водонагревателя. Однако и в таком случае, одновременно лучше пользоваться только одним краном, а не несколькими.

Плюсы независимых систем

Подающий и обратный трубопроводУдаление страницы

Уже на подступе к основным потребителям домашней сети водоснабжения обеспечивается целый комплекс подготовительных мер, обеспечивающих распределение, фильтрацию и настройку давления теплоносителя. Все нагрузки ложатся не на конечное оборудование, а на теплообменник с гидробаком, которые непосредственно принимают ресурсы от магистрального источника. Подобная подготовка ресурса практически невозможна в частном порядке при эксплуатации систем зависимого отопления. Присоединение независимого контура к тому же позволяет рационально расходовать и воду для питьевых нужд оптимальной очистки. Потоки разделяются по целевому назначению и на каждой линии могут предусматривать отдельный уровень подготовки, соответствующий технологическим требованиям.

Перепад давления при отоплении правильное функционирование системы

Зачастую нормальное функционирование гидравлической системы подачи воды, сантехнического оборудования, устройств и узлов, комфортное принятие ванны и осуществление иных гигиенических процедур зависит от оптимального давления. Большинство обывателей полагают, что работа системы заключается в простой подаче жидкости, стоит только открыть кран. В реальности эта система представляет достаточно сложную систему коммуникаций со своими техническими параметрами и характеристиками. Например, перепад напряжения при отоплении очень частое явление, иногда даже взрываются трубы.

Еще больше информации о видах труб для водоснабжения и канализации

Типы труб для водоснабжения

Получить больше информации о типах труб для водоснабжения и канализации вы можете у эксперта . Специалисты знакомы со всеми принятыми классификациями трубопроводов и готовы порекомендовать подходящую продукцию для прокладки коммуникаций. На выбор представлены трубы и соединения для водопровода, теплопровода и других инженерных сетей. Также у нас вы можете заказать монтаж систем водоснабжения и канализации из полипропиленовых труб и изделий из ПНД.
Заказать консультацию

Для чего засыпают трубопровод

Обратная засыпка трубопровода осуществляется после окончательного монтажа водопроводной системы. Подобная засыпка осуществляется с целью удержания проложенных труб в неподвижном положении.

Фиксация труб засыпкой осуществляется несколькими этапами.

  1. Ручная засыпка лопатами. Это первоначальный этап. Осуществляется с двух сторон.
  2. Засыпка после утрамбовки и соединения стыков труб.
  3. Посыпка труб. Тоже производится с двух сторон.

6 Режимы работы нефтепровода при отключении отдельных нефтеперекачивающих станций. Построение совмещенных характеристик.

Временное
отключение какой-либо перекачивающей
станции может быть вызвано перебоями
в системе энергоснабжения, аварией,
ремонтными работами и т. п. При выходе
из строя перекачивающей станции режим
нефтепровода резко изменится. Рассмотрим
нефтепровод, состоящий из одного
эксплуатационного участка с n
перекачивающими станциями. Все ПС
оборудованы однотипными насосами.
Запишем уравнение баланса напоров

Подающий и обратный трубопроводУдаление страницы,
(1.70)

где aП,
bП,
aМ,

– коэффициенты напорной характеристики
подпорного и магистрального насоса;

mM
i
– число работающих магистральных
насосов на i-й перека­чивающей станции;


– число работающих подпорных насосов
на ГПС.

Из
уравнения баланса напоров производительность
нефтепровода со всеми работающими
станциями составляет

. (1.71)

Если
бы нефтепровод был рассчитан на работу
при любых напорах (давлениях), то при
отключении любой одной станции расход
в трубопроводе составил бы

. (1.72)

Очевидно,
что Q*

В
действительности величины напоров и
подпоров перекачивающих станций должны
удовлетворять условиям

, (1.73)

где HПС
max i,
Hmin
i
– разрешенные значения напора и подпора
i-й ПС.

В
качестве примера рассмотрим работу
нефтепровода с четырьмя перекачивающими
станциями . Примем для простоты, что
все перекачивающие станции оснащены
однотипными насосами, нефтепровод
состоит из одного эксплуатационного
участка, перевальные точки по трассе
нефтепровода отсутствуют (L=LР),
ограничения по напору и подпору ПС
одинаковы (HПСmax,
Hmin).

Рассмотрим
случай, когда аварийное отключение
произошло на станции ПС-4 (рис. 1.26).

Подающий и обратный трубопроводУдаление страницы

Рис.
1.26. Расчетная схема нефтепровод

Перекачивающая
станция, расположенная до отключенной
(ПС-3), будет работать на сдвоенный
перегон, то есть протяженность третьего
линейного участка будет равна l3-4=l3+l4.

Проверим
выполнение граничных условий (1.73).
Результаты вычислений представим в
табличной форме (табл. 1.6).

Таблица
1.6

Расчетные
значения подпоров и напоров ПС

Участок

Подпор
на входе ПС

Напор
ПС

Напор
на выходе ПС

Потери
напора на участке

1

HCT1=mM1(aM––bMQ*2-m)

HПС1=H1+
+HCT1

H1=1,02fl1Q*2-m+z2-z1

2

H2=
HПС1-H1

HCT2=mM2(aM––bMQ*2-m)

HПС2=H2+
+HCT2

H2=1,02fl2Q*2-m+z3-z2

3+4

H3=
HПС2-H2

HCT3=mM3(aM––bMQ*2-m)

HПС3=H1+
+HCT3

H3-4=1,02f(l3+l4)Q*2-m+

+zK-z3

КП

HКП=
HПС3-H3-4=
hОСТ

Графическое
решение задачи о регулировании работы
нефтепровода при отключении одной из
перекачивающих станций показано на
рис. 1.27.

Подающий и обратный трубопроводУдаление страницы

Рис.
1.27. Совмещенная характеристика ПС и
участков нефтепровода

Условные
обозначения :

1
— характеристика участка 1,02.f.l1.Q2-m
+
z1 ,
(z1=
z2-z1);

2
— характеристика участка 1,02.f.(l1+l2).Q2-m
+
z2
, (z2=
z3-z1);

3
— характеристика участка 1,02.f.(l1+l2+l3).Q2-m
+
z3
, (z3=
z4-z1);

4
— характеристика участка
1,02.f.(l1+l2+l3+l4).Q2-m
+
z4+
hост
, (z4=
zК-zН);

a-b
, a’-b’ — подпор на ПС-2 ; c-d , c’-d’ — подпор
на ПС-3;

kM
– общее число работающих магистральных
насосов

Какова температура в системе обратного трубопровода

Температура обратного трубопровода четко зафиксирована в нормативах по строительству.

Разогрев должен быть от 120 до 150 градусов. Чаще всего сети работают до 110 градусов, так как трубы в системах большинства зданий бывают изношенными. Они просто не вынесут более высокого нагрева и давления.

Штраф за превышение обратки Блог инженера теплоэнергетика

         Здраствуйте, уважаемые читатели блога teplosniks.ru! На своем блоге ранее я уже писал про перегрев обратки отопления. Самое неприятное в такой ситуации, когда вам выставляют конкретный счет за перегрев по обратному трубопроводу. С деньгами никому не охота расставаться, тем более, когда насчитывают объемы потребления тепла в виде штрафных санкций. Приходится платить и по счетчику и еще сверх. Итак, как же конкретно рассчитывает штраф энергоснабжающая организация?

         Первым пунктом определяется договорной расход сетевой воды через теплоузел. Определяется он по формуле :

Gдог = Qдог*10³⁄(t1-t2)*C ;

где Qдог — тепловая нагрузка на отопление по договору (эта цифра обязательно есть в договоре, посмотрите). Давайте примем конкретную цифру 0,332 Гкал/час.

С — теплоемкость воды, ккал/кг °С

t1 — температура в подаче по графику, °С

t2 — температура в обратке по графику, °С

Подставляем конкретные цифры.Обычно температурный график 150/70 °С (но может быть и 130/70 °С и 105/70 °С и т.д.). В нашем случае  t1 = 150°С  ; t2 = 70°С. Теплоемкость воды можно принять единицу, С = 1. На самом деле теплоемкость будет чуть отличаться от единицы, но нам такая суперточность не нужна. Итак, считаем цифру, расход сетевой воды, который должен быть по договору.

Gдог = 0,332*1000 /(150-70)*1 = 4,15 т/час.

Расход воды по договорной нагрузке, который должен пройти через ваш теплоузел, у нас есть. Фактический расход (по распечатке прибора учета) не должен превышать договорной. Если превышает, значит у вас перегрев. Для того, чтобы считать дальше, нужна распечатка с теплосчетчика. Распечатка выглядит так.

Выбор типа разводки стояков для эффективного отопления дома

Это распечатка с теплосчетчика КМ-5. Ее я привожу только в качестве примера. У вас прибор учета может быть любой другой, не обязательно КМ-5. Но суть дела не меняется, в любой распечатке, с любого прибора учета тепла главные цифры —  расход тепла Q в Гкал и температуры t1 и t2, в °С. По этой самой распечатке нам нужно просчитать расход воды через теплоузел фактический. Считается он все по той же  формуле :

Gфакт = Qфакт*1000 ⁄(t1факт-t2факт)*C.

Смотрим по вашей распечатке температуры в подаче и обратке t1 и t2. Пусть будет t1 = 73,1 °С,  t2 = 49,5 °С. Количество тепла Qфакт также смотрим по распечатке, пусть эта цифра будет 101,4 Гкал. Делим количество Гкал за месяц на количество часов в месяце, 101,4 Гкал на 720 часов, получаем 0,141 Гкал/час.  Считаем дальше :

Gфакт = 0,141*1000 ⁄(73,1-49,5)*1 = 5,97 т/час.

При t1 = 73,1 °С,  обратка по графику 43,8 °С. У нас же по факту 49,5 °С. Перегрев 49,5-43,8 = 5,7 °С. Если в процентах, то на  13,01 % перегрели. Соответственно такой перегрев дал нам превышение и расхода по факту над расчетным G превыш. = 5,97-4,15 = 1,82 т/час. Теперь уже можно подсчитать конкретно, сколько Гкал штрафных вам выставит теплоснабжающая организация.

Считается по формуле :

Qштраф = Gпревыш*С*(t2фактическая-t2 допустимое превышение по графику)*число часов за месяц*0,001.

Допустимое превышение t2 по графику 5% считаем так : берем t2, которое должно быть при t1 = 73,1°С, по графику — 43,8 °С и умножаем на 1,05 получаем 45,99 °С. Подсчитываем, сколько нам выставят за перегрев : 

Qштраф = 1,82*1*(49,5-45,99)*720*0,001 = 4,59 Гкал.

Потом эта цифра умножается на тариф, руб/Гкал, и выставляется как штраф за превышение обратки. Неприятный такой сюрпрайз.

      Не так давно я написал и выпустил книгу, полностью посвященную обратке отопления, перегреву по обратке. Она называется «Все,что вы хотели знать про перегрев обратки!».

Вот содержание этой книги:

1. Введение

2. Что такое обратка отопления?

3. Из за чего возникает перегрев обратки?

4. Штрафные санкции со стороны теплоснабжающей организации за перегрев обратки.

5. Как отрегулировать систему отопления и устранить перегрев по обратному трубопроводу?

6. Заключение

Все, что Вы хотели знать про перегрев обратки!

Буду рад комментариям к статье.

loading.gif

Загрузка…

Горизонтальная внутриквартирная разводка

Во многих новостройках возможно встретить относительно экзотическую схему: в квартиру заходят отводы от стояков, разрешающие развести отопительные устройства под произвольную планировку. Наряду с этим диаметр стояков и отводов подбирается так, что горизонтальный контур в вашей квартире не садит параметры отопления в квартирах выше либо ниже.

Кроме произвольной планировки, горизонтальный контур с выходом и одним входом разрешает наладить учет тепловой энергии. По мере того, как цена отопления квадратного метра возрастает, установка счетчиков делается все более актуальной.

На фото - установленный на вводе в квартиру теплосчетчик.

Как верно сделать разводку отопления в горизонтальном контуре раздельно забранной квартиры?

По скромному точке зрения автора, наиболее разумным будет приспособить к данной ситуации ленинградку, либо барачную схему разводки.

  • По периметру квартиры прокладывается неразрывное кольцо размером ДУ25. Под дверными проемами оно топится в стяжку либо прокладывается под настильным полом.
  • Отопительные устройства врезаются параллельно кольцу, не разрывая его. Размер подводок — ДУ20. Схема подключения отдельного радиатора — нижняя либо диагональная.
  • Любой радиатор комплектуется воздушником в одной из верхних пробок. Опционально смогут быть установлены дроссели либо термоголовки и отсекающие вентиля на подводках.

Реализация ленинградки в квартире. Здесь дроссели установлены и на байпасы между врезками радиаторов.

Давление в автономном контуре

Непосредственное значение слова “перепад” – изменение уровня, падение. В рамках статьи мы затронем и его. Итак, почему падает давление в системе отопления, если она представляет собой замкнутый контур?

Для начала вспомним: вода практически несжимаема.

Избыточное давление в контуре создается за счет двух факторов:

  • Наличия в системе мембранного расширительного бака с его воздушной подушкой.

Устройство мембранного расширительного бачка.

  • Упругости труб и радиаторов отопления. Их эластичность стремится к нулю, но при значительной площади внутренней поверхности контура этот фактор тоже сказывается на внутреннем давлении.

С практической стороны это означает, что регистрируемое манометром падение давления в системе отопления обычно вызвано крайне незначительным изменением объема контура или уменьшением количества теплоносителя.

А вот возможный список того и другого:

  • При нагреве полипропилен расширяется сильнее, чем вода. При запуске собранной из полипропилена системы отопления давление в ней может незначительно упасть.
  • Многие материалы (в том числе алюминий) достаточно пластичны для того, чтобы при длительном воздействии умеренных давлений менять форму. Алюминиевые радиаторы могут просто-напросто раздуваться со временем.
  • Растворенные в воде газы постепенно покидают контур через воздухоотводчик, влияя на реальный объем воды в нем.
  • Значительный нагрев теплоносителя при заниженном объеме расширительного бака отопления может вызывать срабатывание предохранительного клапана.

Наконец, нельзя исключать и вполне реальные неисправности: незначительные течи по стыкам секций и швам сварки, травящий ниппель расширительного бака и микротрещины в теплообменнике котла.

На фото – межсекционная течь на чугунном радиаторе. Зачастую ее можно заметить лишь по следам ржавчины.

Подающий обратный трубопровод

Подающие и обратные трубопроводы должны быть испытаны раздельно по условию прочности неподвижных опер. [1]

Подающие и обратные трубопроводы для систем отопления, вентиляции, горячего водоснабжения следует проектировать раздельно. [2]

Подающие и обратные трубопроводы должны прокладываться отдельно для систем отопления, вентиляции, горячего водоснабжения и производственных нужд. Выполнение этого условия позволяет произвести правильный расчет этих трубопроводов и, что особенно важно, организовать легкий контроль за распределением циркулирующей роды по отдельным системам. [3]

Магистральные подающие и обратные трубопроводы ои-стемы теплоснабжения , к которым присоединяются водогрейные котлы, водоподогреватель-ные установки и сетевые насосы, должны предусматриваться одинарными секционированными или двойными для котельных первой категории независимо от величины расхода тепла и для котельных второй категории – при расходе тепла 300 Гкал / ч и более. В остальных случаях эти трубопроводы должны быть одинарными несекционированными. [4]

Магистральные подающие и обратные трубопроводы системы теплоснабжения , к которым присоединяются водогрейные котлы, водоподогревательные установки и сетевые насосы, должны предусматриваться одинарными секционированными или двойными для котельных первой категории независимо от расхода теплоты, а для котельных второй категории – при расходе теплоты 300 Гкал / ч ( 1 26 ТДж) и более. [5]

Однако подающие и обратные трубопроводы сети обычно прокладываются одного диаметра, хотя имеют место случаи, когда целесообразно укладывать трубы разного диаметра согласно гидравлическим расчетам. [6]

Прокладку подающих и обратных трубопроводов диаметром до 40 мм допускается предусматривать ( при необходимости) в толще бетонной подготовки пола. [7]

Прокладка подающих и обратных трубопроводов в жилых, общественных и вспомогательных зданиях, как правило, должна предусматриваться в подвалах, технических подпольях или под полом первого этажа ( при отсутствии подвалов и подпольев), а также над полом нижнего этажа – при техническом обосновании. Разводящие и сборные магистрали диаметром до 40 мм могут прокладываться в толще бетонной подготовки пола. [8]

Прокладка подающих и обратных трубопроводов в жилых, общественных и вспомогательных зданиях, как правило, должна предусматриваться в подвалах, технических подпольях или под полом первого этажа ( при отсутствии подвалов и подпольев), а также над полом нижнего этажа при техническом обосновании. Разводящие и сборные магистрали диаметром до 40 мм могут прокладываться в толще бетонной подготовки пола. [9]

Прокладка подающих и обратных трубопроводов в жилых, общественных и вспомогательных зданиях, как правило, должна предусматриваться в подвалах, технических подпольях или под полом первого этажа ( при отсутствии подвалов и подпольев), а также над полом нижнего этажа – при техническом обосновании. Разводящие и сборные магистрали диаметром до 40 мм могут прокладываться в толще бетонной подготовки пола. [10]

Прокладку подающих и обратных трубопроводов систем отопления в жилых и общественных зданиях и вспомогательных зданиях предприятий следует предусматривать ( совместно или раздельно) в подвалах, технических этажах, на чердаках, в подпольях или при их отсутствии под полом первого этажа ( в каналах), а при техническом обосновании также над полом первого этажа. [11]

К подающему и обратному трубопроводу местной системы отопления подключается дифференциальный манометр с индукционным датчиком типа ДММ-К-ЮО. Перепад давлений и расход воды в системе связаны между собой квадратичной зависимостью. Изменение расхода воды в системе воспринимается датчиком. Сигнал, получаемый от этого датчика, пропорционален перепаду давлений в системе, если датчик линейный, сигнал получается прямо пропорциональным перепаду и пропорциональным корню квадратному из расхода воды в системе. Получить сигнал, пропорциональный расходу, можно при помощи функционального датчика. [12]

На подающем и обратном трубопроводе от каждого котла устанавливаются задвижки, позволяющие отключать любой котел независимо от других. При установке одного котла наличие задвижек необязательно. [13]

Аксонометрические схемы подающих и обратных трубопроводов ( верхняя и нижняя разводки) изображены на фиг. На схемах показаны запорные вентили, задвижки, переходные муфты и воздухосборник и проставлены диаметры труб в миллиметрах. Уклоны труб указаны стрелками. Главный стояк заканчивается воздухосборником, в котором собирается воздух, попавший из теплофикационной сети. [14]

Для защиты подающих и обратных трубопроводов в проходных коллекторах и технических подпольях при температуре теплоносителя до 150 С, а также открытых частей труб и арматуры допускается применение трехслойного лакокрасочного покрытия. [15]

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...