Клеточная мембрана — Википедия

Что такое цитоплазма, ее химический состав, функции. Строение и функции клеточных мембран. Активный и пассивный транспорт веществ в клетке.

Основные сведения[править | править код]

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных, бактериальных и грибных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Цитоплазма

Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы: основу составляет вода (60–90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот.

Функции цитоплазмы:

  1. объединение всех компонентов клетки в единую систему,
  2. среда для прохождения многих биохимических и физиологических процессов,
  3. среда для существования и функционирования органоидов.

Структура биологических мембран

Схема строения клеточной мембраны.

Ос­но­ву Б. м. со­став­ля­ет про­тя­жён­ный двой­ной слой (бис­лой) гли­це­ро­фос­фо-, сфин­го- и гли­ко­ли­пи­дов со встро­ен­ны­ми в не­го мо­ле­ку­ла­ми различных бел­ков. Гид­ро­фоб­ные (не­по­ляр­ные) груп­пы мо­ле­кул ли­пи­дов (ос­тат­ки жир­ных ки­слот) по­гру­же­ны в тол­щу мембра­ны, а гид­ро­филь­ные (по­ляр­ные) го­лов­ки ори­ен­ти­ро­ва­ны на­ру­жу, в ок­ру­жаю­щую вод­ную сре­ду (см. Ли­пи­ды). Плот­ность упа­ков­ки Б. м. обес­пе­чи­ва­ет­ся элек­тро­ста­тическими взаи­мо­дей­ст­вия­ми по­лярных го­ло­вок и гид­ро­фоб­ны­ми кон­так­та­ми ме­ж­ду це­пя­ми жир­ных ки­слот. Вхо­дя­щие в со­став Б. м. бел­ки вза­имо­дей­ст­ву­ют с ли­пид­ным би­сло­ем с по­мо­щью гид­ро­фоб­ных вза­имо­дей­ст­вий и ван­дер­ва­аль­со­вых свя­зей. Со­от­но­ше­ние ли­пи­дов и бел­ков, их со­став в разл. Б. м. мо­гут су­ще­ст­вен­но раз­ли­чать­ся. Так, в мем­бра­нах мие­ли­но­вой обо­лоч­ки со­дер­жа­ние ли­пи­дов (по мас­се) в че­ты­ре раза боль­ше, чем бел­ков, а во внутр. мем­бра­нах ми­то­хон­д­рий бо­лее чем в два раза пре­об­ла­да­ют бел­ки. Ли­пи­ды Б. м. пред­став­ле­ны гл. обр. фос­фа­ти­дил­хо­ли­ном, фос­фа­ти­ди­лэ­та­но­ла­ми­ном, сфин­го­мие­ли­ном, фос­фа­ти­дил­се­ри­ном, фос­фа­ти­ди­ли­но­зи­том и кар­дио­ли­пи­ном, ко­то­рые об­на­ру­жи­ва­ют­ся при­мер­но в од­ном и том же со­от­но­ше­нии в мем­бра­нах раз­ных по уро­вню ор­га­ни­за­ции ор­га­низ­мов. В то же вре­мя на­бор жир­ных кис­лот, вхо­дя­щих в со­став ли­пи­дов, под­вер­жен из­ме­не­ни­ям. Напр., по­ни­же­ние темп-ры, дав­ле­ния и со­лё­но­сти сре­ды оби­та­ния ор­га­низ­мов со­про­во­ж­да­ют­ся уве­ли­че­ни­ем ко­ли­че­ст­ва не­на­сы­щен­ных свя­зей и/или ко­рот­ко­це­по­чеч­ных жир­ных ки­слот в фос­фо­ли­пи­дах и про­ис­хо­дя­щим вслед­ст­вие это­го умень­ше­ни­ем плот­но­сти упа­ков­ки бис­лоя. Ли­пи­дам свой­ст­вен­на оп­ре­де­лён­ная под­виж­ность внут­ри бис­лоя. Они спо­соб­ны к быст­ро­му вра­ще­нию во­круг оси (вра­ща­тель­ная диф­фу­зия), к сво­бод­но­му пе­ре­ме­ще­нию в пре­де­лах од­но­го слоя мем­бра­ны (ла­те­раль­ная диф­фу­зия), а так­же к пе­ре­хо­ду с од­ной сто­ро­ны бис­лоя на дру­гую (та­кое пе­ре­дви­же­ние обес­пе­чи­ва­ет­ся спец. ме­ха­низ­ма­ми). Для кле­точ­ных мем­бран жи­вот­ных кле­ток ха­рак­тер­но вы­со­кое со­дер­жа­ние хо­ле­сте­ри­на (в ср. ок. 21%), ко­то­рый уча­ст­ву­ет в ре­гу­ля­ции те­ку­че­сти мем­бра­ны, пре­пят­ст­вуя плот­ной упа­ков­ке фос­фо­ли­пи­дов. В рас­тит. клет­ке роль хо­ле­сте­ри­на иг­ра­ет его ана­лог – дес­мо­сте­рин. В мем­бра­нах бак­те­рий и вну­три­кле­точ­ных ор­га­нелл сте­ри­ны от­сут­ст­ву­ют. До 10% су­хо­го ве­ще­ст­ва мем­бран при­хо­дит­ся на до­лю уг­ле­во­дов, ко­то­рые экс­по­ни­ро­ва­ны на внеш­ней сто­ро­не кле­точ­ной мем­бра­ны и яв­ля­ют­ся со­став­ной ча­стью мем­бран­ных гли­ко­ли­пи­дов и гли­ко­про­теи­нов.

Схема структурной организации интегрального белка. Спиральный участок встроен в гидрофобную часть липидного бислоя; N-концевой участок с прикреплёнными к нему олигосахаридными цепями расположен на вне…

Со­дер­жа­ние бел­ка в разл. мем­бра­нах ко­леб­лет­ся от 20 до 75% (в пе­ре­счё­те на сухую мас­су). Мем­бран­ные бел­ки мо­гут быть встрое­ны в бис­лой (ин­те­граль­ные бел­ки). При этом они по­гру­же­ны в мем­бра­ну и про­ни­зы­ва­ют её (ино­гда неск. раз) та­ким об­ра­зом, что дос­та­точ­но про­тя­жён­ные уча­ст­ки бел­ка, об­ра­зо­ван­ные гид­ро­фоб­ны­ми ами­но­кис­ло­та­ми, ока­зы­ва­ют­ся в её тол­ще, а гид­ро­филь­ные – на по­верх­но­сти, по обе сто­ро­ны Б. м. Вы­сту­паю­щие над внеш­ней сто­ро­ной мем­бра­ны уча­ст­ки бел­ко­вых мо­ле­кул обыч­но не­сут неск. ко­ва­лент­но свя­зан­ных, час­то раз­ветв­лён­ных це­пей оли­го­са­ха­ри­дов, об­ра­зо­ван­ных ос­тат­ка­ми ман­но­зы, фу­ко­зы, глю­ко­зы, N-аце­тил­глю­ко­за­ми­на и др. Эти ком­по­нен­ты иг­ра­ют роль мар­ке­ров при рас­по­зна­ва­нии кле­точ­ной по­верх­но­сти. Мо­леку­лы пе­ри­фе­ри­че­ских бел­ков рас­по­ло­же­ны гл. обр. на внутренней по­верх­но­сти мем­бра­ны, не про­ни­кая внутрь би­слоя, и удер­жи­ва­ют­ся на ней с по­мо­щью элек­тро­ста­тич. взаи­мо­дей­ст­вий и во­до­род­ных свя­зей; они свя­зы­ва­ют­ся с мем­бра­ной об­ра­ти­мо и мо­гут пе­ре­хо­дить в ци­то­плаз­му при мо­ди­фи­ка­ции бел­ков (напр., пу­тём их фос­фо­ри­ли­ро­ва­ния) в от­вет на из­ме­не­ния функ­ци­о­наль­но­го со­сто­я­ния клет­ки. Мн. бел­ки ор­га­ни­зо­ва­ны в ви­де слож­ных ком­плек­сов (напр., бел­ки ды­ха­тель­ной це­пи ми­то­хон­д­рий). В клет­ках про­ис­хо­дит по­сто­ян­ное об­нов­ле­ние ком­по­нен­тов Б. м. пу­тём вве­де­ния но­вых молекул липидов и бел­ков, од­на­ко струк­тур­ная ор­га­ни­за­ция Б. м. в те­че­ние всей жиз­ни клет­ки ос­та­ёт­ся не­из­мен­ной.

Функции[править | править код]

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой[1]. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки[1]. Транспорт через мембрану обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии так как происходит перенос веществ из области высокой концентрации в область низкой, то есть против градиента концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит перенос веществ из области низкой концентрации в область высокой, то есть по градиенту концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
  • Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • Ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • Осуществление генерации и проведения биопотенциалов.
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
  • Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Структура ЦПМ

Цитоплазматическая мембрана бактерий, как и все прочие биологические мембраны, является асимметричной жидкокристаллической структурой. Ее асимметрия обусловлена химическим строением молекул белка и их расположением в липидном слое. Одни белки располагаются на поверхности, другие – погружены в него, третьи проходят насквозь от внутренней до внешней поверхности бислоя. Строго определенная ориентация мембранных белков обусловлена их синтезом и асимметричным включением в мембрану[3].

Наружная и внутренняя поверхности ЦПМ различаются по ферментативной активности[3].

В зависимости от условий окружающей среды, в частности от температуры, ЦПМ находится в различных фазовых состояниях: разжиженном или кристаллическом. При переходе из одной фазы в другую меняется подвижность компонентов мембраны, плотность ее упаковки. Это может приводить к нарушениям в функциональной активности ЦПМ[3].

Бактерии и археи: единство противоположностей

Все современные живые организмы относятся к одному из трех доменов жизни: бактерии, археи и эукариоты. По более-менее общепринятой гипотезе эукариоты происходят от своеобразного «слияния» двух других групп, которые являются гораздо более древними. Бактерии и археи происходят от общего предка — по-английски он называется LUCA (last universal common ancestor, последний универсальный общий предок). Бактерии и археи имеют много общих черт, включая одинаковый генетический код, механизмы транскрипции и рибосомной трансляции, но при этом отличаются в некоторых ключевых моментах. Они имеют разный химический состав клеточных мембран и стенок, по-разному устроенный гликолиз, ионные насосы и даже разные механизмы репликации ДНК.

Возможно, различия в устройстве клеточной мембраны являются ключевыми в этом списке различий (рис. 2) [7]. Мембраны современных бактерий состоят из фосфолипидов: сложных эфиров глицерина, двух остатков жирной кислоты и одного фосфатного остатка, к которому может быть присоединена дополнительная полярная группа. Гидрофобные хвосты жирных кислот образуют средний слой мембраны, а полярные остатки глицерина, фосфата и вспомогательных полярных групп — наружный и внутренний слои. Мембраны архей устроены в принципе похоже, но на другой химической основе. Вместо жирных кислот их липиды содержат терпеновые спирты, углеводородные цепочки которых несут метильные группы через каждые четыре атома. Моделирование молекулярной динамики мембран показало, что благодаря таким метильным «ответвлениям» мембраны становятся очень прочными, но при этом сохраняют гибкость [8, 9]. Терпеновые спирты простыми эфирными связями присоединяются к глицеринфосфату, фосфатный остаток может дополняться другими полярными головками, такими же, как у бактерий. Сам глицеринфосфат архей тоже отличается от бактериального — у архей используется другой его оптический изомер (глицерин-1-фосфат вместо глицерин-3-фосфата). Получается, что мембрана — важнейший элемент, обеспечивающей существование клетки как самостоятельной единицы, — появилась у бактерий и архей независимо. Из этого удивительного наблюдения некоторые ученые даже делают вывод о том, что у LUCA мембраны вообще не было [10]. Но это крайне маловероятно, учитывая, насколько важной для большинства биохимических процессов является мембрана. Сложно представить, что молекулярные механизмы, протекающие одинаково и у бактерий, и у архей, появились и могли функционировать еще до появления мембраны. Значит, какая-то мембрана у LUCA все-таки была. Группа ученых из Университетского Лондонского колледжа с помощью математического моделирования разработала модель, описывающую, как эта мембрана выглядела, и как из нее появились разные мембраны бактерий и архей [6].

Fig.2.png

Рисунок 2. Строение мембранных липидов бактерий (справа) и архей (слева) [7].

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Мембранные органеллы[править | править код]

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Статья составлена с использованием следующих материалов:

Литературные источники:

1.

Лысак В.В. Микробиология : учеб. пособие / В. В. Лысак. – Минск: БГУ, 2007 – 430 с

2.

Подколзина В.А. Медицинская микробиология: конспект лекций для вузов, Издательство: «Научная книга», 2009 – 240 стр.

Источники из сети интернет:

3.

Колешко О.И., Завезенова Т.В. Микробиология с основами вирусологии,Иркутск: Изд-во Иркутского университета, 1999. – 452 с.

Свернуть Список всех источников

См. также[править | править код]

  • Липиды
  • Внешняя бактериальная мембрана

Клеточная мембрана, видео

И в завершение образовательное видео о клеточной мембране.

1.jpg

Автор: Павел Чайка, главный редактор журнала Познавайка

При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

Эта статья доступна на английском языке – Cell Membrane.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...