Электрохимическая защита – эффективный способ защиты готовых изделий от электрохимической коррозии.
Причины коррозии
Сети трубопроводов систем жизнеобеспечения распространены по всей территории России. С их помощью эффективно транспортируется газ, вода, нефтепродукты и нефть. Не так давно был проложен трубопроводов для транспортировки аммиака. Большинство видов трубопроводов выполнены из металла, а главный их враг – это коррозия, видов которой имеется много.
Причины образования ржавчины на металлических поверхностях основаны на свойствах окружающей среды, как наружной, так и внутренней коррозии трубопроводов. Опасность образования коррозии для внутренних поверхностей основана на:
- Взаимодействии с водой.
- Наличии в воде щелочей, солей или кислот.
Такие обстоятельства могут сложиться на магистральных водопроводах, системах горячего водоснабжения (ГВС), пара и отопления. Не менее важным фактором является способ прокладки трубопровода: наземный или подземный. Первый проще обслуживать и устранять причины образования ржавчины, по сравнению со вторым.
При способе прокладывания “труба в другую трубу” риск возникновения коррозии находится на невысоком уровне. При непосредственном выполнении монтажа трубопровода на открытом воздухе возможно образование ржавчины от взаимодействия с атмосферой, что тоже приводит к изменению конструкции.
Трубопроводы, расположенные под землей, в том числе пара и горячей воды наиболее уязвимы к коррозии. Возникает вопрос о подверженности к коррозии труб, расположенных на дне водоисточников, но лишь небольшая часть магистралей расположена в этих местах.
Согласно предназначению трубопроводы с риском возникновения коррозии подразделяются на:
- магистральные;
- промысловые;
- для систем отопления и жизнеобеспечения населения;
- для сточной воды от промышленных предприятий.
Понятие электрохимической защиты
Электрохимическая защита оборудования и сооружений из металлов — комплекс мероприятий, предпринимаемых с целью предотвращения коррозионных процессов, поддержания работоспособности защищаемых объектов в период эксплуатации. Основной результат от использования средств ЭХЗ — охрана инженерных коммуникаций от воздействия коррозии, влекущей огромные экономические потери из-за преждевременного износа оборудования.
Суть ЭХЗ состоит в управлении токами коррозии, всегда образующимися при контакте металлоконструкции и электролита. Посредством электрохимзащиты анодная разрушающаяся зона переходит с защищаемого объекта на анодное заземление или стороннее изделие из более активного металла. В результате смещения электродного потенциала металла распространение коррозии останавливается.
Главное при устройстве электрохимзащиты — обеспечить обязательный контакт защищаемого сооружения и внешнего анода с помощью металлического кабеля или контакта и электролита. Электрическая цепь, в которую входит защищаемый объект, кабель ЭХЗ, анод и электролит, должна замкнуться — в противном случае защитного тока в системе не возникнет.
Что обеспечивает электрохимическая защита от коррозии?
Данная защита позволяет защищать подобные изделия весьма эффективным образом. В ситуации, когда нет возможности применения оберточного материала или лакокрасочного покрытия для защиты, именно этот метод позволяет получить необходимый результат с минимальными потерями.
Такими методами обрабатывают подземные и надземные трубопроводы, а кроме того, он подходит и для днищ судов, а также и для множества других проблематичных в данном отношении ситуаций. При этом электрохимическая защита оказывается в полной мере эффективной во всех подобных ситуациях, она не подводит и полностью себя оправдывает, предотвращая коррозионные разрушения.
Для реализации подобной возможности к изделию подключается электрический ток из внешней среды, которым обеспечивается поляризация катодного типа, превращая анодные участки в катодные. В целом подобная защита может быть катодной или анодной.
Катодный вариант актуален при защите не склонного к пассивации металла, однако здесь может возникнуть опасность перезащиты, которая делает металл хрупким. Среди ее разновидностей можно отметить протекторную защиту, где могут применяться протекторы из разных видов металлов.
А что до анодной защиты – именно электрохимическая защита от коррозии трубопроводов оказывается наиболее актуальной, потому как она позволяет работать именно с теми металлами, из которых изготавливаются трубы. Такой вариант защиты в любом случае требует внимательного индивидуального подхода, и для обеспечения эффективности необходимо относиться с должным вниманием к целому ряду аспектов.
Так, к примеру, крайне важным аспектом в таких ситуациях становится качество сварных швов, которое должно быть идеальным, кроме того, важно, чтобы щелей и воздушных карманов также было немного.
Материал, с которым надлежит работать, должен оказываться в рабочей среде в своем пассивном состоянии, а еще подобные технологии неприменимы там, где имеются заклепочные соединения.
Важно отметить, что электрод и катод должны быть помещенными в раствор. Только соблюдение этих аспектов позволит в полной мере грамотно реализовать защиту упомянутого типа.
Таким образом, подобные технологии защиты оказываются довольно сложными и специфическими, и их максимально глубокое изучение оказывается порой актуальным даже для опытных специалистов, потому как прогресс актуален и для данного направления, и новые решения определенно оказываются достойными всяческого внимания и изучения.
Для того чтобы добиться успехов на таком поприще, необходимо изучать актуальные решения и максимально погружаться в профессиональную среду, в рамках которой обычно и циркулируют подобные решения и технологии. Ведь для открытой общественности они оказываются обычно просто неинтересными.
3 Требования к ГРПШ
(Новая редакция. Изм. № 2)
6.3.1* Оборудование ГРПШ рекомендуется размещать в шкафу, выполненном из негорючих материалов, а для ГРПШ с обогревом — с негорючим утеплителем.
ГРПШ размещают отдельно стоящими на опорах из негорючих материалов или на наружных стенах зданий, для газоснабжения которых они предназначены, с учетом допустимого уровня звукового давления. На наружных стенах зданий размещение ГРПШ с газовым отоплением не рекомендуется.
Допускается размещать ГРПШ ниже уровня поверхности земли, при этом такой ПРГШ следует относится к отдельно стоящему.
(Измененная редакция. Изм. № 2)
6.3.2* ГРПШ с входным давлением газа до 0,3 МПа включительно устанавливают:
- на наружных стенах газифицируемых жилых, общественных, административных и бытовых зданий независимо от степени огнестойкости и класса конструктивной пожарной опасности при расходе газа до 50 м3/ч;
- на наружных стенах газифицируемых жилых, общественных, в том числе административного назначения, административных и бытовых зданий не ниже степени огнестойкости III и не ниже класса конструктивной пожарной опасности С1 при расходе газа до 400 м3/ч.
(Измененная редакция. Изм. № 2)
6.3.3* ГРПШ с входным давлением газа до 0,6 МПа включительно допускается устанавливать на наружных стенах производственных зданий, котельных, общественных и бытовых зданий производственного назначения с помещениями категорий В4, Г и Д и котельных.
6.3.4* ГРПШ с входным давлением газа свыше 0,6 МПа на наружных стенах зданий устанавливать не допускается.
(Измененная редакция. Изм. № 2)
6.3.5* При установке ГРПШ с входным давлением газа до 0,3 МПа включительно на наружных стенах зданий расстояние от стенки ГРПШ до окон, дверей и других проемов должно быть не менее 1 м, а при входном давлении газа свыше 0,3 до 0,6 МПа включительно — не менее 3 м. При размещении отдельно стоящего ГРПШ с входным давлением газа до 0,3 МПа включительно его следует размещать со смещением от проемов зданий на расстояние не менее 1 м.
(Измененная редакция. Изм. № 2)
6.3.6* Допускается размещение ГРПШ на покрытиях кровли с негорючим утеплителем газифицируемых производственных, зданий степеней огнестойкости I — II, класса конструктивной пожарной опасности С0 со стороны выхода на кровлю на расстоянии не менее 5 м от выхода.
(Измененная редакция. Изм. № 2)
Предупреждение об использовании файлов cookies на сайте Info KS
В соответствии с законами ЕС, поставщики цифрового контента обязаны предоставлять пользователям своих сайтов информацию о правилах в отношении файлов cookie и других данных. Администрация сайта должна получить согласие конечных пользователей из ЕС на хранение и доступ к файлам cookie и другой информации, а также на сбор, хранение и применение данных при использовании продуктов Google.
Файл cookie – файл, состоящий из цифр и букв. Он хранится на устройстве, с которого Вы посещаете сайт Info KS. Файлы cookie необходимы для обеспечения работоспособности сайтов, увеличения скорости загрузки, получения необходимой аналитической информации.
Сайт использует следующие cookie:
Необходимые для работы сайта: навигация, скачивание файлов. Происходит отличие человека от робота.
Файлы cookie для увеличения быстродействия и сбора аналитической информации. Они помогают администрации сайта понять взаимодействие посетителей сайтом, дают информацию о страницах, которые были посещены. Эта информация помогает улучшать работу сайта.
Рекламные cookie. В эти файлы предоставляют сведения о посещении наших страниц, данные о ссылках и рекламных блоках, которые Вас заинтересовали. Цель — отражать на страницах контент, наиболее ориентированный на Вас.
Если Вы не согласны с использованием нами файлов cookie Вашего устройства, пожалуйста покиньте сайт.
Продолжением просмотра сайта Info KS Вы даёте своё согласие на использование файлов cookie.
Коррозионное растрескивание под влиянием напряжения
Если на металлическую поверхность одновременно воздействуют внешние негативные факторы и высокое напряжение от ЛЭП, создающее растягивающие усилия, то происходит образование ржавчины. Согласно проведенным исследованиям получила свое место водородно-коррозионная новая теория.
Трещины небольшого размера образовываются при насыщении трубы водородом, которое после обеспечивает увеличение давления изнутри до показателей, выше положенного эквивалента связи атомов и кристаллов.
Под влиянием диффузии протонов производится наводораживание поверхностного слоя под влияние гидролиза при повышенных уровнях катодной защищенности и одновременного воздействия неорганических соединений.
После того как трещина раскроется, происходит ускорение процесса ржавление металла, которое обеспечивается грунтовым электролитом. В итоге под влиянием механических воздействий металл подвергается медленному разрушению.
Установки дренажной защиты для газопровода
При дренажном способе электрохимзащиты источник тока не требуется, газопровод с помощью блуждающих в земле токов сообщается с тяговыми рельсами железнодорожного транспорта. Осуществляется электрическая взаимосвязь благодаря разности потенциалов железнодорожных рельсов и газопровода.

Схема электрических дренажей
Посредством дренажного тока создается смещение электрического поля находящегося в земле газопровода. Защитную роль в данной конструкции играют плавкие предохранители, а также автоматические выключатели максимальной нагрузки с возвратом, которые настраивают работу дренажной цепи после спада высокого напряжения.
Система поляризованных электродренажей осуществляется с помощью соединений вентильных блоков. Регулирование напряжения при такой установке осуществляется переключением активных резисторов. Если метод дал сбой, применяют более мощные электродренажи в виде электрохимзащиты, где анодным заземлителем служит железнодорожная рельса.
Зависимость защитной плотности тока от характеристики грунтов
Тип грунта | рп Омм | А, А/м2 |
Влажный глинистый грунт: | ||
— pH >8 | 15 | 0,033 |
pH = 6-8 | 15 | 0,160 |
— с примесью песка | 15 | 0,187 |
Влажный торф (pH <8) | 15 | 0,160 |
Увлажненный песок | 50 | 0,170 |
Сухой глинистый грунт | 100 | 0,008 |
О станциях катодной защиты
Эффективное оборудование для ЭХЗ трубопроводов, расположенных под землей, — комплекс станции катодной защиты (СКЗ), состоит из следующих элементов:
- станция катодной защиты;
- анодные заземлители;
- кабельные линии
- пункт контроля и измерения;
Станции подключают к сети электроснабжения или автономным устройствам. Выходное напряжение на СКЗ может регулироваться вручную или в автоматическом режиме — по току защиты или потенциалу защищаемого объекта.
Строительство электрохимзащиты требует использования надежных составляющих системы. Наша компания предлагает широкий выбор качественного оборудования для защиты разных объектов. Оставьте заявку на сайте: мы вышлем вам прайс по оборудованию ЭХЗ и подробно проконсультируем по возникшим вопросам.
Стандарты[править | править код]
- DNV-RP-B401 — Cathodic Protection Design — Det Norske Veritas
- EN 12068:1999 — Cathodic protection. External organic coatings for the corrosion protection of buried or immersed steel pipelines used in conjunction with cathodic protection. Tapes and shrinkable materials
- EN 12473:2000 — General principles of cathodic protection in sea water
- EN 12474:2001 — Cathodic protection for submarine pipelines
- EN 12495:2000 — Cathodic protection for fixed steel offshore structures
- EN 12499:2003 — Internal cathodic protection of metallic structures
- EN 12696:2000 — Cathodic protection of steel in concrete
- EN 12954:2001 — Cathodic protection of buried or immersed metallic structures. General principles and application for pipelines
- EN 13173:2001 — Cathodic protection for steel offshore floating structures
- EN 13174:2001 — Cathodic protection for harbour installations
- EN 13509:2003 — Cathodic protection measurement techniques
- EN 13636:2004 — Cathodic protection of buried metallic tanks and related piping
- EN 14505:2005 — Cathodic protection of complex structures
- EN 15112:2006 — External cathodic protection of well casing
- EN 50162:2004 — Protection against corrosion by stray current from direct current systems
- BS 7361-1:1991 — Cathodic Protection
- NACE SP0169:2007 — Control of External Corrosion on Underground or Submerged Metallic Piping Systems
- NACE TM 0497 — Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Piping Systems
- ГОСТ 26251-84 — Протекторы для защиты от коррозии. Технические условия
- ГОСТ 9.056-75 — Единая система защиты от коррозии и старения. Стальные корпуса кораблей и судов. Общие требования к электрохимической защите при долговременном стояночном режиме
- ГОСТ Р 51164-98 — Трубопроводы стальные магистральные. Общие требования к защите от коррозии
- ГОСТ 9.602-2016 — Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии
Что такое электрохимическая защита
Электрохимическая защита трубопроводов от коррозии – это комплекс мер, направленных на недопущение развития коррозии под воздействием электрического поля. Для преобразования постоянного тока применяются специализированные выпрямители.
Защита от коррозии производится созданием электромагнитного поля, в результате чего приобретается отрицательный потенциал или участок исполняет роль катода. То есть отрезок стальных трубопроводов, огражденный от образования ржавчины, приобретает отрицательный заряд, а заземление – положительный.
Катодная защита трубопроводов от коррозии сопровождает электролитической защищенностью с достаточной проводимостью среды. Такую функцию выполняет грунт, при прокладывании металлических подземных магистралей. Контактирование электродов осуществляется через токопроводящие элементы.
Индикатор для определения показателей коррозии – это высоковольтный вольтметр или датчик коррозии. С помощью этого прибора контролируется показатель между электролитом и грунтом, конкретно для этого случая.
заземления
Электроснабжение УНП2-7-65
Корпуса распределительного щита, установки УНП, компрессора, нагревателя воздуха объединены общим проводом заземления , который выведен на болт заземления, установленный на раме автомобиля с левой стороны. Этот болт должен быть связан с з.
Нагреватель воздуха для УНП2-7-65
2. Проверить подключение заземления к пульту управления. 6.3. Открыть пульт управления. Убедиться в отсутствии влаги или грязи внутри пульта управления и проверить положение ручек выключателей УЗО и автомате «Подогрев»: УЗО должно быть включено (ручка .
Монтаж внутрицеховых трубопроводов
Какие минимальные расстояния допускаются между осями прокладываемых труб? 4. Расскажите о правилах заземления трубопроводов для отвода статического электричества. .
Примечания[править | править код]
- ↑ Защита металлов от коррозии (ГРИГОРЬЕВ В. П., 1999), ХИМИЯ
- ↑ Davy, H., Phil. Trans. Roy. Soc., 114,151,242 and 328 (1824)
- ↑ Ashworth V., Corrosion Vol. 2, 3rd Ed., 1994, 10:3