Поршень — Словарь автомеханика

общее описание принципы работы и устройства поршней, а также общие сведения о том когда надо менять поршни

Устройство поршня[править | править код]

Поршень или компрессора имеет три части, выполняющие свои функции[2]:

  • днище (воспринимает газовые силы и тепловую нагрузку);
  • уплотняющая часть (препятствует прорыву газов, передаёт большую часть тепла от поршня цилиндру);
  • направляющая часть (тронк) — передаёт боковую силу на стенку цилиндра, поддерживает положение поршня.

Головкой поршня называют днище заодно с уплотняющей частью. Для передачи усилия от поршня может использоваться шток в крейцкопфных двигателях, либо шатун, соединяемый с поршнем посредством пальца[3]. Другие варианты соединения (СПГГ, шайбовые) используют редко. Кроме тронка или крейцкопфа, боковые усилия может воспринимать и шток.

В могут применяться двусторонние поршни. Такой поршень имеет два днища, и тепловой режим его более напряжённый[4]. Но в случае использования подпоршневого пространства как тепловая напряжённость не возрастает. Теплонапряжённость растёт в 2-тактных двигателях, [5].

Поршневой палец, при его наличии (тронковые поршни), , ограничен в перемещении в бобышках стопорными кольцами или пластиковыми упорами (Mercedes), либо его положение определено запрессовкой в шатуне (ранние модели ВАЗ). Чаще всего применяют пустотелый со стопорными кольцами, наружный диаметр которого цементован или хромирован[6].

Днище[править | править код]

Формы камеры сгорания в поршне дизельного двигателя (показана форсунка и распыл)

Его форма зависит от типа двигателя, смесеобразования, расположения свечей, форсунок, клапанов, метода организации газообмена в цилиндре[7]. Вогнутое днище поршня образует (дизеля, бензиновые с высокой степенью сжатия и хорошей топливной экономичностью), однако при этом есть склонность к образованию нагара. При выпуклой форме днища увеличивается прочность поршня, однако камера сгорания приобретает линзовидную форму, что увеличивает теплоотдачу. Однако в искровых ДВС увеличение теплоотдачи может позволить увеличить допустимую степень сжатия[8], что частично компенсирует потери. Плоское днище — промежуточное по форме, и самое простое в изготовлении — популярно в бензиновых ДВС и вихрекамерных/предкамерных дизелях. В устаревших двухтактных ДВС днище имело выступ-дефлектор для отклонения горючей смеси при продувке и уменьшения её выброса[9]. В дизелях с объёмным смесеобразованием форма днища обеспечивает подачу топлива в объём воздуха, с плёночным — большая часть топлива подаётся на стенку поршня (распространение в последние годы системы впрыска Common rail решило спор о смесеобразовании в автомобильных дизелях в пользу объёмного).

Жаровым поясом называют расстояние от канавки верхнего кольца до днища поршня. При увеличении его высоты облегчаются работа верхнего кольца, но растёт масса поршня и увеличиваются выбросы углеводородов[10]. Уменьшение высоты жарового пояса ниже допустимого влечёт прогар поршня и/или разрушение области верхнего кольца. Поршни дизелей при равных диаметрах имеют большую высоту жарового пояса, тяжелее и прочнее бензинового по причине больших давлений сжатия и сгорания, и теплоотдачи с днища.

Уплотняющая часть поршня имеет важнейшее значение для работы поршневых ДВС, их состояние определяют по компрессии и угару масла, зависящих от состояния поршневой группы. В автомобильных ДВС угар масла не должен превышать 1—3 % от расхода топлива. В современных бензиновых моторах этот процент ещё меньше, в устаревших моделях дизелей — 5 % и выше[11]. Разброс величины компрессии по цилиндрам обычно не должен превышать 0,5 кгс/см2 у бензиновых ДВС и 1 кгс/см2 у дизельных. При превышении угара масла двигатель выходит за пределы разрешённых выбросов, наблюдаются отказы свечей, осмоление форсунок, залегание колец, и потому он должен быть снят с эксплуатации[12].

Уплотняющая часть[править | править код]

Поршень имеет установленные в канавках компрессионные и маслосъёмные кольца. Типичное количество колец на автомобильных моторах — 3, ранее применялись конструкции с 4—6 кольцами[13]. На тихоходных двигателях колец больше для уменьшения пропуска масла и газов, улучшения охлаждения поршня. Уменьшение числа и высоты колец снижает потери на трение, а сохранение уплотнения достигается надёжным их прилеганием и износостойкостью. Канавки маслосъёмных колец имеют радиальные отверстия для возврата масла в поддон. По мере износа колец зазор их стыках и канавках растёт, увеличивается угар масла. В силуминовых поршнях могут заливать вставку из жаростойкого чугуна (нирезиста) под верхнее кольцо, что увеличивает ресурс канавки и кольца. Такая вставка является и термокомпенсирующей, уменьшая тепловое расширение[14] (см. верхнее фото).

Диаметр уплотняющей части меньше, чем в районе юбки, так как нагрев этой части поршня выше. Чтобы избежать задира с последующим заклиниванием колец в своих канавках, жаровый пояс имеет ещё меньший диаметр. Уплотняющая часть имеет в сечении круглый диаметр, а не овальный, как юбка. Жаровый пояс часто имеет неглубокие проточки, увеличивающие теплоотдачу в поршень до кольца. Тем самым, высота пояса может быть уменьшена[15].

Решающее значение для уплотнения поршня имеет качество колец: хорошее прилегание к зеркалу без просветов[16], чистота обработки по наружному диаметру и высоте, зазор в замке, и покрытие колец износостойкими материалами[17]. Чугунные маслосъёмные кольца надёжнее составных, потому что вероятность ошибок при их установке меньше[18]. В автомобильных ДВС до 80 % тепла отводится от поршня через кольца[19], поэтому при плохом прилегании колец отвод тепла идёт через юбку поршня, а при росте её температуры неизбежен задир. Из-за этого на обкатке двигателя ограничивают его мощность. Непритёртые кольца перегреваются и сами и потому «садятся» — упругость их уменьшается, вслед за этим быстро растёт пропуск газов в картер, выброс масла, и т. д. При перегреве возможно смыкание стыков, ведущее к поломке колец, и даже обрыву поршня по канавке кольца[20]. Теплоотдача от поршня достигает расчётной, когда сотрутся следы хона в цилиндре, и притрутся кольца.

Направляющая часть[править | править код]

В тронковых двигателях направляющей частью поршня является юбка (тронк). Бобышки юбки передают большие нагрузки от газовых и инерционных сил, поэтому соединены литыми рёбрами с днищем поршня (в штампованых поршнях вместо рёбер, которые нельзя получить штамповкой, имеется массивное соединение с днищем). В районе бобышек формируют литьём или фрезеруют снаружи прямоугольные углубления, называемые условно «холодильниками». На деле, эти так называемые «холодильники» снижают массу благодаря укорочению поршневого пальца и передаче газовых сил ближе к оси шатуна, что разгружает днище поршня. Чтобы сократить тепловой зазор без риска задира, юбку поршня в плоскости, перпендикулярной оси симметрии изготовляют овальной (зазор в плоскости качания шатуна минимальный, а по оси поршневого пальца больше на 0,5—1,5 мм), а в плоскости, проходящей через ось симметрии – бочкообразной. Обычно кольца располагают в головке поршня, но последнее маслосъёмное кольцо может быть расположено и ниже оси пальца, в юбке[21]. В зависимости от способа фиксации поршневого пальца, на поршне могут быть выполнены канавки под стопорные кольца.

Большинство поршней имеют смещение оси поршневого пальца, чтобы уравнять боковые давления на юбку на сжатии и рабочем ходе (когда давление выше) поршня. Поэтому поршень монтируется не произвольно, а по метке (обычно надписью на холодильнике либо стрелкой на днище в сторону свободного конца коленвала)[22].

Поршень выполняет ряд важных функций:

  • обеспечивает передачу механических усилий на шатун;
  • отвечает за герметизацию камеры сгорания топлива;
  • обеспечивает своевременный отвод избытка тепла из камеры сгорания

Работа поршня проходит в сложных и во многом опасных условиях – при повышенных температурных режимах и усиленных нагрузках, поэтому особенно важно, чтобы поршни для двигателей отличались эффективностью, надежностью и износостойкостью. Именно поэтому для их производства используются легкие, но сверхпрочные материалы – термостойкие алюминиевые или стальные сплавы. Поршни изготавливаются двумя методами – литьем или штамповкой.

Основные функции поршня:

  • Воспринимает давление газов и передает возникающее усилие на шатун – коленчатый вал;
  • Создает герметизацию камеры сгорания;
  • Отводит лишнее тепло от камеры сгорания.

Материалы[править | править код]

Требования к материалу поршней:

  • высокая механическая прочность;
  • малая плотность;
  • теплостойкость, в том числе термоциклическая;
  • хорошая теплопроводность (важнее в искровых ДВС);
  • малый коэффициент линейного расширения (оптимально — совпадающий с таковым у гильзы);
  • высокая коррозионная стойкость (для дизелей — стойкость к серосодержащим газам);
  • хорошие антифрикционные свойства, обеспечивающие ресурс;
  • для поршней в жидкостных насосах — коррозионная/химическая стойкость;
  • умеренная цена.

Не существует материала, оптимального по всем этим требованиям. Для изготовления автомобильных поршней в настоящее время применяются серый чугун и алюминиевые сплавы типа Al-Si. В мощных дизелях с большим ресурсом, многотопливных (включая работающие на растительных маслах) применяют составные поршни — днище и уплотняющая часть из жаропрочной стали, тронк из чугуна или силумина. Существуют автомобильные поршни с покрытием керамикой, поршни из жаропрочных сплавов (двигатели Стирлинга), проводились эксперименты с пластмассовыми поршнями, покрытыми керамикой, и т.д.

Чугун[править | править код]

Достоинства

  • Чугун дешевле других материалов;
  • Чугунные поршни прочнее, жаростойки и износостойки, имеют антифрикционные свойства;
  • Благодаря малому температурному коэффициенту расширения уменьшается зазор по юбке.

Недостатки

  • Большой удельный вес. Поэтому чугунные поршни применяют в тихоходных двигателях, где газовые силы значительно больше инерционных, и этот недостаток нивелируется;
  • Низкая теплопроводность, из-за чего нагрев днища поршней достигает 350—400 °C. Это недопустимо в бензиновых двигателях, так как он может привести к возникновению калильного зажигания. Коэффициент наполнения при этом также снижается.

Алюминиевый сплав[править | править код]

Подавляющее большинство современных автомобильных двигателей имеют силуминовые[23] поршни с содержанием кремния 13 % и более, то есть заэвтектоидные сплавы типа АК-4, АК-18, АК-6[24]. Ранее применялись сплавы АЛ1, АК2, имеющие меньшее содержание кремния. Контрафактные поршни часто изготовлялись из обычного алюминия[25] Ресурс поршней с недостаточным количеством кремния резко снижен, причём из-за повышенного коэффициента теплового расширения происходит задир ещё на обкатке. Чем выше содержание кремния, тем больше ресурс поршня, но пластичность сплава меньше[26]. Силуминовые поршни для облегчения приработки обычно электролитически покрывают оловом[27]. Поршень может быть получен отливкой либо штамповкой, оба варианта имеют свои плюсы и минусы.

Литые поршни часто изготовляют из доэвтектоидных сплавов, упрощающих литьё, а тепловое расширение юбки ограничивают в этом случае вставкой. При штамповке поршня закладка термовставок невозможна, потому ограничить их тепловое расширение можно лишь достаточным содержанием кремния. Следовательно, штампованые (называемые иногда коваными) поршни из высококремнистого заэвтектоидного сплава должны быть более износостойки, чем литые.

Достоинства силумина

  • малая масса (как минимум на 30 % меньше по сравнению с чугунными);
  • высокая теплопроводность (в 3—4 раза выше теплопроводности чугуна), обеспечивающая нагрев днища поршня не более 250 °C, что увеличивает коэффициент наполнения и позволяет повысить степень сжатия в бензиновых двигателях;

Недостатки

  • больший коэффициент линейного расширения, чем у чугуна;
  • меньшая твёрдость и износостойкость поршневых канавок;
  • значительное снижение прочности при нагреве (повышение температуры до 300 °C приводит к снижению механической прочности алюминия на 50—55 % против 10 % у чугуна).

Недопустимые для нормальной работы двигателя зазоры между стенками цилиндров и силуминовыми поршнями устраняются конструктивными мероприятиями:

  • придание юбке поршня в овально-бочкообразной или овально-конусной формы;
  • изоляция тронковой (направляющей) части поршня кольцом от наиболее нагретой его части (головки) в составных поршнях;
  • косой разрез юбки по всей длине, обеспечивающий пружинящие свойства стенок (тихоходные ДВС)[28];
  • Т- и П-образные прорези в юбке поршня не на полную её длину в сочетании с её овальностью (тихоходные ДВС)[29];
  • компенсационные вставки из инвара, уменьшающие тепловое расширение;
  • повышение содержания кремния в материале поршня[30] (минусом является резкое снижение ресурса отливочных форм).

Составные поршни — головка из жаропрочной стали[править | править код]

Применяются обычно в дизелях среднего или крупного размера, а также во всех дизелях, работающих на растительных маслах в качестве топлива. Юбка обычно из серого чугуна, либо алюминиевого сплава. Преимущества — уменьшение теплоотдачи в поршень, то есть повышение индикаторного КПД, максимальный ресурс, возможность использования различных топлив[31]. Недостатки — более высокая цена, вес, применение только в дизельном цикле, более дорогие поршневые кольца, стойкие к особо высоким температурам, большие осевые размеры поршня, необходимость увеличения противовесов, удлинение гильзы с ростом габаритов двигателя и его массы[32]. В крупноразмерных двигателях, таких как тепловозные и главные судовые, работающие на полной мощности с высоким давлением наддува по двухтактному циклу, невозможно добиться нужного ресурса (30 000 часов и более) с чугунными или силуминовыми поршнями. Головка из жаропрочной стали (типа 20Х3МВФ или подобной)[33] обеспечивает ресурс колец и их канавок, направляющая же должна быть выполнена из антифрикционного материала — чугуна или силумина[34].

Как функционирует и из чего состоит?

Поршневой двигатель внутреннего сгорания имеет сложное строение и состоит из:

  • Корпуса, включающего в себя блок цилиндров, головку блока цилиндров;
  • Газораспределительного механизма;
  • Кривошипно-шатунного механизма (далее КШМ);
  • Ряда вспомогательных систем.

КШМ является связующим звеном между энергией выделяемой при сгорании топливо-воздушной смеси (далее ТВС) в цилиндре и коленвалом, обеспечивающим движение автомобиля. Газораспределительная система отвечает за газообмен в процессе функционирования агрегата: доступ атмосферного кислорода и ТВС в двигатель, и своевременное выведение газов, образовавшихся во время горения.

Устройство простейшего поршневого двигателя

Вспомогательные системы представлены:

  • Впускной, обеспечивающей поступление кислорода в двигатель;
  • Топливной, представленной системой впрыска топлива;
  • Зажигание, обеспечивающее искру и воспламенение ТВС для двигателей, работающих на бензине (дизельные двигатели отличаются самовоспламенением смеси от высокой температуры);
  • Системой смазки, обеспечивающую уменьшение трения и износа соприкасающихся металлических деталей с помощью машинного масла;
  • Системой охлаждения, которая не допускает перегрева рабочих деталей двигателя, обеспечивая циркуляцию специальных жидкостей типа тосол;
  • Выпускной системой, обеспечивающей выведение газов в соответствующий механизм, состоящей из выпускных клапанов;
  • Системой управления, обеспечивающей наблюдение за функционирование ДВС на уровне электроники.

Основным рабочим элементом в описываемом узле считается поршень двигателя внутреннего сгорания, который и сам является сборной деталью.

Ресурс поршня[править | править код]

Две основные проблемы, решаемые в поршневых ДВС: износ и прогар поршня. Износные явления проявляются как увеличение зазора между юбкой и цилиндром, износ верхней поршневой канавки, задир юбки[35]. Наблюдаемое также появление трещин и разрушение перегородок между кольцами имеют обычно те же причины, что и у прогара.

Для устранения первой организуют принудительное (обычно масляное) охлаждение поршня[36], повышают твёрдость увеличением доли кремния, используют надёжные воздухоочистители для уменьшения абразивного износа[37], изменяют параметры цикла двигателя для снижения температуры поршня в центре и районе верхнего кольца (напр., увеличивают коэффициент избытка воздуха или увеличивают перекрытие клапанов в наддувных дизелях), применяют вставки под верхнее кольцо, качественные поршневые кольца для хорошего прилегания сразу после обкатки, ускоряют заводскую обкатку применением специальных масел[38], повышают качество моторных масел для устранения закоксовывания колец и надёжной отдачи тепла от днища[39], иногда — используют покрытия для поршня или композитные материалы. В японской практике были варианты пластмассовых поршней с покрытием керамикой. Для продления ресурса применяют антифрикционное покрытие направляющей и даже жаровой поверхности поршня[40]. Ускоренный или аварийный износ контрафактных поршней вызывается нарушением размеров и/или качества поковки/отливки, её материала. Погиб шатуна, перекос гильзы или её посадочного гнезда ведёт к быстрому задиру поршня[41]. В двухтактных ДВС причиной заклинивания может быть нехватка масла в топливе.

Прогар поршня может вызываться конструктивными или эксплуатационными причинами. В первом случае превышена расчётная допустимая температура днища[42], и все двигатели этой модели будут быстро выходить из строя (возможна другая причина — контрафактные поршни[43]: они не могут выдержать нагрузок). Для устранения опасности прогара в этих случаях применяют снижение механических напряжений и температуры поршня[44] (увеличение оребрения, охлаждение, снижение теплоотдачи в поршень изменением параметров цикла)[45]. Для снижения температуры сгорания может применяться даже подача воды в цилиндр[46].

Эксплуатационными причинами прогара могут быть: нарушение угла опережения впрыска/зажигания[47], отказ (заклинивание) форсунки, детонация (бензиновые)[48], чрезмерная форсировка, общий перегрев из-за отказа термостата, потери тосола, зажатых клапанов, бензина с низким октановым числом[49], вызывающим детонацию, длительное калильное зажигание. Это приводит к превышению температуры днища и возможному его прогару. При детонационном сгорании, кроме того, может возникать выкрашивание поверхности, ведущее к дальнейшему её развитию, прогару поршня или вылому перегородок между кольцами, поломке колец. Следовательно, необходимо соблюдать инструкцию — применять нужное топливо, правильно выставлять угол опережения зажигания/впрыска, немедленно прекращать работу неисправного дизеля со стучащей форсункой, или перегретого мотора. Высококачественные форсунки и другие дозирующие элементы топливной аппаратуры продлевают ресурс поршней.

На что нужно обращать внимание при замене поршней

1. При покупке новых поршней нужно проверить их комплектность (обязательно наличие поршневых пальцев и стопоров – если они используются на данном двигателе). Нужно осмотреть поршни на отсутствие механических повреждений (поршни изготавливаются из хрупких алюминиевых сплавов и при падении коробки с поршнями в процессе транспортировки, могут возникнуть механические повреждения).
2. При покупке дубликатных поршней нужно проверять их на предмет наличия заводского брака (несоосность отверстия под палец, прослабление пальца, микротрещины, пузыри).
3. При покупке поршней ремонтных размеров перед выполнением расточки блока цилиндров нужно проверить купленные поршни по пунктам 1 и 2.
4. Поршневые кольца должны быть установлены на поршень правильно, со строгим соблюдением ориентации колец и их зазоров.
5. При замене поршней обязательно нужно убедиться, что цилиндры и шатуны, коленвал, система смазки и прочие элементы двигателя находятся в нормальном (рабочем) состоянии.

Для того, чтобы передать нам изображения, замеры деталей либо другую оперативно требующуюся информацию, используйте программы Whatsapp, Viber или Skype. Контактный телефон:
8-913-715-57-58, 8-913-7-4444-69
skype: stars_novosibirsk

Рассмотрим рабочий цикл бензинового двигателя

Первый такт рабочего цикла — впуск. Поршень перемещается из ВМТ в НМТ, при этом впускной клапан 7 открыт, а выпускной 12 закрыт, и горючая смесь под действием разрежения поступает в цилиндр. Когда поршень достигает НМТ, впускной клапан закрывается, и цилиндр оказывается заполненным рабочей смесью. У большинства бензиновых двигателей горючая смесь формируется вне цилиндра (в карбюраторе или впускном трубопроводе 8).

Следующий такт — сжатие. Поршень перемещается обратно из НМТ в ВМТ, сжимая рабочую смесь. Это необходимо для ее более быстрого и полного сгорания. Впускной и выпускной клапаны закрыты. Степень сжатия рабочей смеси во время такта сжатия зависит от свойств применяемого бензина, и в первую очередь от его антидетонационной стойкости, характеризуемой октановым числом (у бензинов оно составляет 76 — 98). Чем выше октановое число, тем больше антидетонационная стойкость топлива. При чрезмерно высокой степени сжатия или низкой антидетонационной стойкости бензина может произойти детонационное (в результате сжатия) воспламенение смеси и нарушиться нормальная работа двигателя. К концу такта сжатия давление в цилиндре возрастает до 0,8… 1,2 МПа, а температура достигает 450…500°С.

За тактом сжатия следует расширение (рабочий ход), когда поршень из ВМТ перемещается обратно вниз. В начале этого такта, даже с некоторым опережением, горючая смесь воспламеняется от свечи зажигания 10. При этом впускной и выпускной клапаны закрыты. Смесь сгорает очень быстро с выделением большого количества теплоты. Давление в цилиндре резко возрастает, и поршень перемещается до ЦМТ, приводя во вращение через шатун 3 коленчатый вал 1. В момент сгорания смеси температура в цилиндре повышается до 1800… 2 000 °С, а давление — до 2,5…3,0 МПа.

Последний такт рабочего цикла — выпуск. В течение этого такта впускной клапан закрыт, а выпускной открыт. Поршень, перемещаясь вверх от НМТ к ВМТ, выталкивает оставшиеся в цилиндре после сгорания и расширения отработавшие газы через открытый выпускной клапан в выпускной трубопровод 11. Затем рабочий цикл повторяется.

Рабочий цикл дизеля имеет некоторые отличия от рассмотренного цикла бензинового двигателя. При такте впуска по трубопроводу 8 в цилиндр поступает не горючая смесь, а чистый воздух, который во время следующего такта сжимается. В конце такта сжатия, когда поршень подходит к ВМТ, в цилиндр через специальное устройство — форсунку, ввернутую в верхнюю часть головки цилиндра, под большим давлением впрыскивается дизельное топливо в мелкораспыленном состоянии. Соприкасаясь с воздухом, имеющим вследствие сжатия высокую температуру, частицы топлива быстро сгорают. Выделяется большое количество теплоты, в результате чего температура в цилиндре повышается до 1700…2000 °С, а давление — до 7…8 МПа. Под действием давления газов поршень перемещается вниз — происходит рабочий ход. Такты выпуска у дизеля и бензинового двигателя аналогичны.

Для того чтобы рабочий цикл в двигателе происходил правильно, необходимо согласовать моменты открытия и закрытия его клапанов с частотой вращения коленчатого вала. Это осуществляется следующим образом. Коленчатый вал с помощью зубчатой, цепной или ременной передачи приводит во вращение еще один вал двигателя — распределительный 9, который должен вращаться вдвое медленнее коленчатого. На распределительном валу имеются профилированные выступы (кулачки), которые непосредственно или через промежуточные детали (толкатели, штанги, коромысла) перемещают впускные и выпускные клапаны. За два оборота коленчатого вала каждый клапан, впускной и выпускной, открывается и закрывается только один раз: во время такта впуска и выпуска соответственно.

Уплотнение между поршнем и цилиндром, а также удаление со стенок цилиндра излишнего масла обеспечивают специальные поршневые кольца 13.

Коленчатый вал одноцилиндрового двигателя вращается неравномерно: с ускорением во время рабочего хода и замедлением при остальных, вспомогательных тактах (впуск, сжатие и выпуск). Для повышения равномерности вращения коленчатого вала на его конце устанавливают массивный диск — маховик 14, который во время рабочего хода накапливает кинетическую энергию, а в течение остальных тактов отдает ее, продолжая вращаться по инерции.

Однако несмотря на наличие маховика, коленчатый вал одноцилиндрового двигателя вращается недостаточно равномерно. В моменты воспламенения рабочей смеси картеру двигателя передаются значительные толчки, что быстро выводит из строя сам двигатель и детали его крепления. Поэтому одноцилиндровые двигатели применяются редко, в основном на двухколесных ТС. На других машинах устанавливают многоцилиндровые двигатели, которые обеспечивают более равномерное вращение коленчатого вала за счет того, что рабочий ход поршня в разных цилиндрах совершается неодновременно. Наиболее широкое распространение получили четырех-, шести-, восьми- и двенадцатицилиндровые двигатели, хотя на некоторых ТС используются также трех- и пятицилиндровые.

Многоцилиндровые двигатели обычно имеют рядное или V-образное расположение цилиндров. В первом случае цилиндры установлены в одну линию, а во втором — в два ряда под некоторым углом друг к другу. Этот угол для различных конструкций составляет 60… 120°; у четырех- и шестицилиндровых двигателей он обычно равен 90°. По сравнению с рядными V-образные двигатели такой же мощности имеют меньшую длину, высоту и массу. Нумерация цилиндров производится последовательно: сначала с передней части (носка) нумеруются цилиндры правой (по ходу движения машины) половины двигателя, а затем, также начиная с передней части, левой половины.

Равномерная работа многоцилиндрового двигателя достигается в том случае, если чередование рабочего хода в его цилиндрах происходит через равные углы поворота коленчатого вала. Угловой интервал, через который будут равномерно повторяться одноименные такты в разных цилиндрах, можно определить делением 720° (угол поворота коленчатого вала, при котором совершается полный рабочий цикл) на число цилиндров двигателя. Например, у восьмицилиндрового двигателя угловой интервал равен 90°.

Последовательность чередования одноименных тактов в разных цилиндрах называется порядком работы двигателя. Порядок работы должен быть таким, чтобы в наибольшей степени уменьшить отрицательное влияние на работу двигателя инерционных сил и моментов, возникающих из-за того, что поршни движутся в цилиндрах неравномерно и их ускорение меняется по величине и направлению. У четырехцилиндровых рядных и V-образных двигателей порядок работы может быть такой: 1 — 2 — 4 — 3 или 1 — 3 — 4—2, у шестицилиндровых рядных и V-образных двигателей — соответственно 1 — 5—3 — 6 — 2—4 и 1 — 4 — 2 — 5 — 3 — 6, а у восьмицилиндровых V-образных двигателей — 1 — 5 — 4 — 2— 6 — 3 — 7 — 8.

С целью более эффективного использования рабочего объема цилиндров и повышения их мощности в некоторых конструкциях поршневых двигателей осуществляют наддув воздуха с соответствующим увеличением количества впрыскиваемого топлива. Для обеспечения наддува, т. е. создания на входе в цилиндр избыточного давления, чаще всего применяют газотурбинные компрессоры (турбокомпрессоры). В этом случае для нагнетания воздуха используется энергия отработавших газов, которые, выходя с большой скоростью из цилиндров, вращают турбинное колесо турбокомпрессора, установленное на одном валу с насосным колесом. Кроме турбокомпрессоров применяют также механические нагнетатели, рабочие органы которых (насосные колеса) приводятся во вращение от коленчатого вала двигателя с помощью механической передачи.

Для лучшего наполнения цилиндров горючей смесью (бензиновые двигатели) или чистым воздухом (дизели), а также более полной их очистки от отработавших газов клапаны должны открываться и закрываться не в моменты нахождения поршней в ВМТ и НМТ, а с некоторым опережением или запаздыванием. Моменты открытия и закрытия клапанов, выраженные в градусах через углы поворота коленчатого вала относительно ВМТ и НМТ, называются фазами газораспределения и могут быть представлены в виде круговой диаграммы.

Впускной клапан начинает открываться во время такта выпуска предыдущего рабочего цикла, когда поршень еще не достиг ВМТ. В это время отработавшие газы выходят через выпускной трубопровод я вследствие инерции потока увлекают за собой из открывшегося впускного трубопровода частицы свежего заряда, которые начинают наполнять цилиндр даже при отсутствии разрежения в нем. К моменту прихода поршня в ВМТ и началу его движения вниз впускной клапан уже открыт на значительную величину, и цилиндр быстро наполняется свежим зарядом. Угол а опережения открытия впускного клапана у различных двигателей колеблется в пределах 9…33°. Впускной клапан закроется тогда, когда поршень пройдет НМТ и начнет двигаться вверх на такте сжатия. До этого времени свежий заряд заполняет цилиндр по инерции. Угол р запаздывания закрытия впускного клапана зависит от модели двигателя и составляет 40… 85°.

5fb0bc34-91f0-4e98-832a-9a021e559a0f.jpg

Рис. Круговая диаграмма фаз газораспределения четырехтактного двигателя: а — угол опережения открытия впускного клапана; р — угол запаздывания закрытия впускного клапана; у — угол опережения открытия выпускного клапана; б — угол запаздывания закрытия выпускного клапана

Выпускной клапан открывается во время рабочего хода, когда поршень еще не достиг НМТ. При этом работа поршня, необходимая для вытеснения отработавших газов, уменьшается, компенсируя некоторую потерю работы газов из-за раннего открытия выпускного клапана. Угол Y опережения открытия выпускного клапана составляет 40…70°. Выпускной клапан закрывается несколько позднее прихода поршня в ВМТ, т. е. во время такта впуска следующего рабочего цикла. Когда поршень начнет опускаться, оставшиеся газы по инерции еще будут выходить из цилиндра. Угол 5 запаздывания закрытия выпускного клапана составляет 9… 50°.

Угол а + 5, при котором впускной и выпускной клапаны одновременно приоткрыты, называется углом перекрытия клапанов. Вследствие того что этот угол и зазоры между клапанами и их седлами в данном случае малы, утечки заряда из цилиндра практически нет. Кроме того, наполнение цилиндра свежим зарядом улучшается за счет большой скорости потока отработавших газов через выпускной клапан.

Углы опережения и запаздывания, а следовательно, и продолжительность открытия клапанов должны быть тем больше, чем выше частота вращения коленчатого вала двигателя. Это связано с тем, что у быстроходных двигателей все процессы газообмена происходят быстрее, а инерция заряда и отработавших газов не изменяется.

6db96195-0e67-40b4-bce7-62dd1b4bd08b.jpg

Рис. Принципиальная схема газотурбинного двигателя: 1 — компрессор; 2 — камера сгорания; 3 — турбина компрессора; 4 — силовая турбина; М — вращающий момент, передаваемый к трансмиссии машины

Принцип действия газотурбинного двигателя (ГТД) поясняет рисунок. Воздух из атмосферы засасывается компрессором 2, сжимается в нем и подается в камеру сгорания 2, куда также подается топливо через форсунку. В этой камере происходит процесс горения топлива при постоянном давлении. Газообразные продукты сгорания поступают р турбину компрессору 3, где часть их энергии затрачивается на приведение в действие компрессора, нагнетающего воздух. Оставшаяся часть энергии газов преобразуется в механическую работу вращения свободной или силовой турбины 4, которая через редуктор связана с трансмиссией машины. При этом в турбине компрессора и свободной турбине происходит расширение газа с уменьшением давления от максимального значения (в камере сгорания) до атмосферного.

Рабочие части ГТД в отличие от аналогичных элементов поршневого двигателя постоянно подвергаются воздействию высокой температуры. Поэтому для ее снижения в камеру сгорания ГТД необходимо подавать значительно больше воздуха, чем это требуется для процесса сгорания.

См. также[править | править код]

  • Поршневой двигатель внутреннего сгорания
  • Поршневой двигатель внешнего сгорания
  • Поршневой палец

Состав поршневой группы

Состав поршневой группы

Узел, состоящий из поршня, компрессионных, маслосъемных колец, а также поршневого пальца принято называть поршневой группой. Функция её соединения с шатуном возложена на стальной поршневой палец, имеющий трубчатую форму. К нему предъявляются требования:

  • минимальной деформации при работе;
  • высокой прочности при переменной нагрузке и износостойкости;
  • хорошей сопротивляемости ударной нагрузке;
  • малой массы.

По способу установки поршневые пальцы могут быть:

  • закреплены в бобышках поршня, но вращаться в головке шатуна;
  • закреплены в головке шатуна и вращаться в бобышках поршня;
  • свободно вращающимися в бобышках поршня и в головке шатуна.
Состав поршневой группы

Пальцы, установленные по третьему варианту, называются плавающими. Они являются наиболее популярными, поскольку их износ по длине и окружности является незначительным и равномерным. При их использовании опасность заедания сведена к минимуму. Кроме того, они удобны при монтаже.

Основные функции поршня

Основной функцией поршня является приведение в движение коленвала при помощи толкания шатуна. Это действие возникает при воспламенении смеси топлива и воздуха. Плоская поверхность днища принимает на себя всю механическую нагрузку.

( 2 оценки, среднее 4.5 из 5 )

Поршень двигателя: функции,конструкция,типы,фото,видео

Поршень занимает центральное место в процессе преобразования химической энергии топлива в тепловую и механическую. Поговорим про поршни двигателя внутреннего сгорания, что это такое и основное назначение в работе.

ЧТО ТАКОЕ ПОРШЕНЬ ДВИГАТЕЛЯ?

Поршень двигателя — это деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления. Изначально поршни для автомобильных двигателей внутреннего сгорания отливали из чугуна. С развитием технологий стали использовать алюминий, т.к. он давал следующие преимущества: рост оборотов и мощности, меньшие нагрузки на детали, лучшую теплоотдачу.

Ссылки

Question book-4.svg
В этой статье не хватает ссылок на источники информации.

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.

Вы можете

отредактировать

эту статью, добавив ссылки на авторитетные источники.

Эта отметка установлена

14 мая 2011

.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...